Genetic selection programs aiming to mitigate methane (CH4) emissions require the estimation of genetic correlations with other production and economical traits and predicted selection response. CH4 intensity was predicted from Mid-infrared spectra of milk samples from Holstein cows. Genetic correlations between CH4 intensity and milk yield (MY) was -0.68, fat yield (FY) -0.13, protein yield (PY) -0.47, somatic cell score (SCS) 0.07, longevity 0.05, fertility 0.31, body condition score (BCS) 0.17. Adding 25% relative weight on CH4 intensity to the current Walloon selection index, the response to selection would reduce CH4 intensity by 24%, increase MY by 30%, FY by 17%, PY by 29%, SCS by -14%, longevity by 24% but also reduce fertility by 11% and BCS by 13%. In conclusion, environmental traits can be added without jeopardizing production traits, but energy balance related traits have to be protected. 

P. B Kandel, S. Vanderick, M.-L. Vanrobays, A. Vanlierde, F. Dehareng, E. Froidmont, H. Soyeurt, Nicolas Gengler

Proceedings of the World Congress on Genetics Applied to Livestock Production, Volume Genetic Improvement Programs: Selection for harsh environments and management of animal genetic resources, , 040, 2014
Download Full PDF BibTEX Citation Endnote Citation Search the Proceedings

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.