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SUMMARY
Recently we developed a new statistical method for mapping quantitative trait loci (QTLs). Compared 

to current QTL mapping methods, our method has a  number of advantages and can more accurately and 
efficiently locate multiple QTLs. The method is based on a procedure which combines the interval mapping 
with an interval test. Theoretically, this method is more complex and versatile than the current methods 
and allows a host of models be fitted in data to explore fully the complex information in a data set. We 
have now implemented the method for several commonly used experimental designs and for multiple trait 
analysis.

IN TRO D U C TIO N
Correct identification of genes affecting quantitative trait variation by using molecular marker informa

tion is a very important first step to any subsequent marker-assisted selection or gene introgression. There 
have been several statistical methods and computer programs (notably the interval mapping of Lander 
and Botstein (1989)) developed to utilize a complete marker linkage map to  systematically search major 
quantitative trait loci (QTLs) in experimental organisms. There are however several problems with the 
current QTL mapping methods. The major deficiencies of the current QTL mapping methods, including 
Lander and Botstein’s interval mapping method, are as follows: (:') The test for a QTL is not formulated 
as an interval test (a test which should distinguish whether there is a QTL on an interval or not and 
should be independent of the effects of QTLs at other regions of the chromosome), ( ii)  If there is more 
than one QTL on a chromosome, the test statistic will be compounded and the estimated positions and 
effects of the identified “QTLs” by current methods are likely to be biased. (H i) It is also not efficient to 
use only two markers at a time to do the test, as the information from other markers is not utilized.

Recently we have developed a new statistical method of QTL mapping (Zeng, 1993; 1994) to improve 
the precision and efficiency of mapping multiple QTLs. The method is based on a procedure which 
combines interval mapping with a multiple regression analysis. The basis of the method is an interval test 
in which the test statistic on a marker interval is made to be independent of the effects of QTLs located 
on other regions of the chromosome. This is achieved by fitting other genetic markers in the statistical 
model as a control when performing interval mapping by using partial regression theory.

In this paper, I briefly discuss some properties and utility of the method, and also summarize some 
recent developments on the method.

RESULTS AND DISCUSSION
Composite interval mapping: Suppose that we have a data set from a backcross population from 

two inbred lines with measurements on a quantitative trait and information on t molecular markers in 
n individuals. To test for a QTL in a marker interval between two markers i  and i  +  1, we can use the 
following linear model to perform the test

Vj = bo + b’ x'j + bkX jk + ej for j  = 1,2, • • •, n (1 )
k?i,i+1

where % is the trait value of the j th  individual, 60 is the mean of the model, b‘  is the effect of the putative 
QTL expressed as a difference in effects between the homozygote and heterozygote, x" is an indicator 
variable, taking a value 1 or 0 with probability depending on the genotypes of the markers i  and i  +  1 and 
the testing position of the putative QTL, bk is the partial regression coefficient of the phenotype y  on the
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jfcth marker, xjk  is the type of the Jbth marker in the j'th individual, taking a value 1 or 0 depending on 
whether the marker type is homozygote or heterozygote, and e3 is a  random variable. The summation of 
other markers in the model depends on the choice of the model. By fitting different markers in the model, 
a host of models can be created and different models have different advantages and disadvantages.

Statistically this is a mixture model. Assuming that e / s  axe identically and independently normally 
distributed with mean zero and variance tr2, the likelihood function is given by L \  =  I I j= i[P j( l) /j( l)  + 
P i(0)/,(0)], where p; ( l)  gives a  prior probability of Xj =  1, pj(0) =  1 -  P j(l), fj( 1) and f j (0) specify 
a normal density function for the random variable y j with a mean bo +  b* +  Ejc^;,i+i ^kxjk  an(l &o + 

bkXjk, respectively, and a variance <r2. By using the standard maximum likelihood procedures, 
the maximum likelihood (ML) estimates of the parameters &*, bk’s and <r2 are found to be the solutions of

6* =  (Y — X B )'P /c  (2)

B =  { X 'X ) ~ l X ' ( Y  -  PS*) (3)

d2 =  [(Y -  X B )'(Y  -  X B ) -  ci*2] /n  (4)

where Y i s a ( n x l )  vector of yfs, B is a ((t -  1) x 1) vector of the ML estimates of bk’s (including b0 
but excluding 6*), X is an (n x (t -  1)) matrix of xjk’s, P i s a ( n x l )  vector with elements P 3 specifying 
the ML estimate of the posterior probability of x j =  1:

p j =  P f ( l ) / i ( l ) /b i ( l ) / i ( l )  +  w ( 0)/i(0)] (5)

and c =  E"=i P j-  The prime indicates transposition of a vector or matrix.
These estimates can be found by iterations of the above equations via the ECM algorithm (Meng and 

Rubin 1993) (ECM stands for Expectation/Conditional Maximization) beginning with the initial estimate 
6* =  0 or the least squares estimates of 6* and B using x~ — py(l). In each iteration, the algorithm consists 
one E-step, Eq. (5), and three CM-steps, Eqs. (2), (3) and (4). The convergence of the algorithm to ML 
estimates has been proven by Meng and Rubin (1993). The advantage of this algorithm over the full EM 
algorithm (maximizing 6* and B simultaneously in the M step) is tha t the inverse, (X 'X )“ \  does not 
need to be updated, and thus the efficiency of the numerical evaluation is improved substantially.

The test for the hypotheses H 0 : b' =  0 and H 1 : b’  ^  0. is based on the likelihood ratio LR = 
-21og(X0/ i i ) ,  where L 0 and L x represent the likelihood values under H 0 and H x. As shown by Zeng 
(1993), this test is an interval test, a test with the test statistic independent of the effects of possible 
QTLs located outside a defined region on the chromosome being tested. Theory and properties of such a 
test were established and explained by Zeng (1993).

Like Lander and Botstein’ interval mapping, this test can be performed at any position in a  genome. 
Thus it creates a systematical strategy to search for QTLs in a genome. As the test statistic is almost 
independent for each interval, a test on each interval is more likely to test for a single QTL only.

There are several advantages of this method in comparison with the current QTL mapping methods. 
First, by confining the test to  one region at a time, it reduces a multiple dimensional search problems 
(for multiple QTLs) to  a one dimensional search problem. Second, by conditioning on linked markers 
in the test, the sensitivity of the test statistic to the position of individual QTLs can be increased and 
the precision of QTL mapping can be improved significantly. Third, by selectively and simultaneously 
utilizing all the available information in a data set to make inference, the efficiency of QTL mapping is 
improved. See Zeng (1994) for more detailed discussion on the method.

Model selection: As explained above, statistical analysis for mapping QTLs can be made based on 
a number of models. Then what is the best model for analysis for a given data set, i.e. how many markers 
and what markers should be used in (1)? Generally in practice, for the same data set, many models can 
be applied and compared. It would, however, be tedious to  do that exercise on every data set generated.
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Numerical methods can be provided to guide the search for the “best” model for mapping QTLs. This is 
particularly important for automation of data analysis.

Several factors influence the choice of a model, such as the sample size and the number and density 
of markers in data. When the sample size is small, not many markers (and parameters) can be fitted 
m the model, as the degree of freedom of the test can be reduced very significantly by fitting too many 
parameters. Markers can be selected for fitting as background control by stepwise regression. When linked 
markers are also fitted to create an interval test, the genetic distance between the boundaries and the 
testing position (called the testing window of the interval test) can be controlled. Empirical study has 
shown that when this distance is more than 15 cM (which, of course, depends on sample size), the power 
reduction associated with the interval test can be largely alleviated. One problem to apply the method 
to data is that, in practice, markers axe unevenly distributed in genomes. In some regions, markers are in 
dense, and in some other regions markers are spare. So if we use markers to fix the testing window, the 
window size can vary from region to region. That could cause a problem for comparing results between 
different regions. One solution for that can be to use virtue indicator markers constructed from their 
respective flanking markers to fix the size of the testing window for interval test. All these procedures can 
be automated.

Significance values: Appropriate choice of a critical value for a  test is a major issue in statistics. 
For mapping QTLs, the choice for a critical value is complicated by the situation of multiple tests in 
multiple (correlated) locations. Also for different models, the critical values tend to be different. The 
general patterns and simple approximations of the critical values for the interval test have been discussed 
by Zeng (1994). These can serve as a guide for choosing an appropriate critical value for the test in 
different situations. However, more studies on the issue need to be made as the methods are extended to 
other experimental designs and data structures.

Analysis on multiple traits and multiple environments-testing pleiotropy, close linkage, 
and QTL-environment interaction: Many QTL mapping data have observations on multiple traits 
or on one trait in multiple environments. With such data, we can ask questions like: Does a QTL 
have pleiotropic effects on multiple traits? Does a QTL show genotype-environment interaction effects? 
Statistically this involves multiple trait analysis, as expressions of a trait in different environments can be 
regarded as different traits or different trait states. Two experimental designs are considered. In design 
I, different traits are measured in the same individual or genotype, and in design II, traits expressed in 
different environments are measured in different individuals.

For design I, the statistical model for analysis can be (for two traits in F2 design)

[ ( £ ) ■ » ♦ ( £ )  «*] + ( S' ) (6)

where dj and d*2 axe the dominance effects of the putative QTL at the position being tested on traits 1 
and 2, dlk and d2k are dominance effects of marker k on the traits, z]  is an indicator variable, taking a 
value 1 or 0 depending on the probability of the putative QTL to be heterozygote or homozygote, Z jk 
takes a value 1 if marker k  of individual j  is heterozygote and 0 otherwise, e1: and e2j are error terms 
and assumed to  be bivariate normal distributed, and other terms have similar interpretations as those 
in (1). This is an extension of model (1) to two trait analysis for F2 design. For design II, the model 
can be yy = m + b 'x’j  + d’ z '■ + Y.k {hkXijk + dikZijk) + ey where yy is the value of trait i (or a trait in 
environment t) in individual j  and ey ~  _/V(0,of).

Several tests can be made in this setting of analysis. First, to test the presence a QTL at a position, 
we can test the hypothesis =  0, b2 -  0, d \ = 0, and d2 =  0. Given that this hypothesis is rejected, we 
can proceed to test the hypotheses b\ =  0 and d\ = 0 or b$ = 0 and d  ̂ =  0 to see whether the QTL has 
pleiotropic effects, and also in the case of multiple environments, we can test the hypothesis b\ =  b2 and 
d \ =  d ^ to  see whether there is QTL-environment interaction. In certain cases, tests can also be made
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to test the hypotheses of pleiotropy vs. close linkage. Under the null hypothesis of pleiotropy, one QTL 
(one position) is formulated to have effects on both traits, and under the alternative hypothesis of close 
linkage, two QTLs (two positions) are formulated to have effects on two traits.

There are two advantages of this analysis. First, by multivariate analysis, the accuracy and efficiency 
of mapping QTLs can be further improved in some cases, compared with mapping on each trait sepa
rately. We have observed from our simulation studies (Jiang, Zeng and Weir, unpublished) that the joint 
analysis can usually give better resolution for mapping QTLs. Second, it provides a formal method to 
test biologically interesting questions.

T esting  ep istasis: Mapping for QTLs can proceed position by position for testing one QTL at a time 
conditional on some of other markers. After that, if sufficient interest arises, interaction effects of pairwise 
identified QTLs (or chromosome regions) can be tested for significance. A genetic model of two gene 
interaction has been proposed for statistical analysis (Mather and Jinks, 19TT). Consider the simplest 
case of two gene pairs, A-a and B-b. These can give rise to  nine different genotypes in an F 2 design

AA Aa aa
BB 01 + 02+  iaa dl +  02 +  ida — Ol +  02 — iaa
Bb OL\ + 2̂ +  iad d\ + d<2 +  idd — 0 1 + ^ 2 ”  iad
bb Oj -  02 — iaa dl — 02 — ida — dl — 02 4" iaa

where a and d define the additive and dominant effects of loci A and B, and iaa, iadi ida and i-dd are four 
interaction effects of loci A and B. These eight parameters correspond to the eight degrees of freedom 
among the nine observations. These specifications are very general for statistical analysis.

The statistical model for testing interaction effects of two QTLs identified to be located between 
markers i, i  +  1 and markers i' ,  i' +  1 can be defined as y j =  b0 +  aixjj  +  d iz \ j  +  a^x^j +  d2z ^  +
iaaKai + + E * * W , W 6**« + ^  ^  WhCTe the VMiaWeS m
corresponding indicator variables with values specified in the above table with probabilities depending on
the genotypes of two pairs of flanking markers and the testing positions. In F 2 design, with two pairs 
of flanking markers, there are 81 (=  9 x 9 )  different combinations of marker genotypes, and for each 
marker genotype the probability of an individual to possess one of the nine QTL genotypes is different. 
However, given the marker genotype, the probability of QTL genotype should be independent for two 
marker intervals, irrespective of whether the two marker intervals are linked or not (assuming that there 
is no cross-over interference), that is Pro6(Q lQ 2|M Pl/M P2) =  Profe(Ql|M Pl)Pro6(Q2|M P2) for QTL 
genotype Q1Q2 given two marker pair genotypes MP1 and MP2.

The likelihood function is given by L = f l“=i E*=i Vjkfjk where the summation is for the nine geno
types of QTLs A and B, pjk is the prior probability of individual j  having QTL genotype k, and fjk is 
the corresponding normal density function for individual j  with QTL genotype k specified by the model. 
Testing on parameter Vs can be made individually or collectively by likelihood ratio tests with constrained 
likelihoods calculated with corresponding i’s set up to be zero.

This is an appropriate testing procedure which combines interval mapping with multiple regression 
analysis. Properties and behavior of this method for testing QTL epistasis will be discussed elsewhere.
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