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SUMMARY
In interval mapping pairs or groups of marker loci are used for the identification of quantitative 

trait loci (QTLs) lying between those markers. With data from a segregating population from an inbred 
line cross the markers flanking each interval can be considered a pair at a time. The method can be 
applied by regression or maximum likelihood (ML), with the two approaches giving similar results. 
Regression is simpler and hence allows the fitting of more realistic models. Interval mapping gives some 
extra power to detect QTLs and better separation of the estimates of the size and location of the QTLs 
compared to using markers one at a time. Groups of linked QTLs can mislead the experimenter if a 
model with only a single QTL is fined to the data, but models fitting multiple QTLs or a single QTL and 
additional markers as cofactors can ameliorate this problem. In outbred populations marker loci may not 
be fully informative and this will reduce the power to detect a QTL and may lead to biased estimates of 
its position. For both the analysis of crosses between outbred lines and the analysis of half-sib structured 
outbred populations there are simple ways to combine information from a number of markers in a 
linkage group to increase the power to detect QTLs and reduce biases in estimates of QTL position and 
effect. The benefits of using multiple, as opposed to single, markers are greater in the analysis of outbred 
populations than they are in the analysis of inbred line crosses. Future experimental studies of QTLs in 
livestock populations should attempt to use multiple marker methods in order to reap these benefits.

INTRODUCTION
Interval mapping is concerned with the identification and localisation on a map of the genome of 

individual loci (or clusters of linked loci) that contribute to variation in quantitative traits. There are 
three main justifications for the mapping of such quantitative trait loci (or QTLs). First, to examine the 
failings of the infinitesimal model of quantitative genetic variation and perhaps improve it. Second, to 
allow marker assisted selection to manipulate loci within and between breeds. Third, ultimately to clone 
some of the loci involved and study (and possibly manipulate) their actions at the molecular level.

In early QTL mapping studies markers were used one at a time, however the development of 
complete marker maps led to the realisation that it was possible to use pairs or groups of linked loci for 
mapping QTLs. The term ‘interval mapping’ was coined to describe the mapping of a QTL between a 
pair of linked markers (Lander and Botstein, 1986, 1989), although the use of multiple loci for mapping 
is an extension of an approach used for marker linkage studies (e.g. Ott, 1991). Interval mapping has 
largely been used in the analysis of data from inbred line crosses. Such populations illustrate the basic 
features of interval mapping and we open by discussing these. Inbred lines are rarely or never available 
for livestock, however, so we will move on to the application of the principles of interval mapping to 
crosses between outbred lines and to random mating populations.

INTERVAL MAPPING - INBRED LINES
Basic approach

The basis of any mapping of QTLs is an association between phenotypic variation and segregation 
at one or more genetic markers. For any gene, marker or QTL, to be segregating in a population (e.g. F2 
or backcross) derived from an inbred line cross it must have been fixed for alternative alleles in the two 
inbred lines crossed and so have a heterozygosity of one in the Fi population. Hence codominant loci (as 
most DNA based markers are) in such a cross are fully informative in the sense that it is possible to 
identify unequivocally (barring genotyping errors, missing data, etc.) whether individuals in a 
segregating generation have none, one or two alleles from each inbred line. Thus for a putative QTL at a 
given recombinational distance from a single marker it is simple to calculate the probability of 
individuals in the segregating generation having each possible QTL genotype conditional on their 
marker genotype. However, the expected mean difference between marker genotypes due to the linked
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QTL is a function of both the effect of the QTL and its distance from the marker, so with information on 
the mean difference between genotypes at a marker, it is not possible to estimate both the effect of the 
QTL and its distance from the marker. Segregation of the QTL within a marker genotype due to 
recombination will affect the within marker genotype phenotypic distribution. In principle, by using 
maximum likelihood (ML) or similar analyses this information can be combined with that from mean 
differences to estimate separately the effect of a QTL and its distance from the marker (Weller, 1986; 
Lander and Botstein, 1989; Haley, 1991; Knott and Haley, 1992a). However, in practice such estimates 
may be rather poor (see below).

Interval mapping is a simple extension of single marker mapping possible when a map of linked 
markers is available. For a putative QTL at a given position between two markers, the probability of 
individuals in the segregating generation being each possible QTL genotype is calculated conditional on 
the genotype at both markers. The number of marker classes is increased compared to using a single 
marife.r (e.g. from 2 to 4 in a backcross) and, for the same distance from a marker, the probability with 
which we can assign putative QTL genotypes is increased. Furthermore, there will only be one 
combination of QTL effect and position between the markers which best explains the mean phenotypic 
differences between the marker genotype classes. Thus the ability to separately estimate the QTL effect 
and position is greatly improved. For fully informative markers with no interference, the markers 
flanking an interval absorb the effect of a QTL between them - there is no advantage to be gained by the 
inclusion of more than the two flanking markers.

Lander and Botstein (1989) applied the method by ML, maximising the likelihood for defined positions 
along the chromosome (e.g. 1 cM intervals). Various formulations of the likelihood for one marker or 
for interval mapping have been given (e.g. Weller, 1986; Lander and Botstein, 1989; Knott and Haley, 
1992a; Jansen, 1992). Evidence for a QTL at a particular position is obtained as the logarithm of the 
ratio of this likelihood to that which assumes no QTL. This test statistic is then plotted against the 
position on the chromosome to obtain a curve, the highest point of which indicates the most likely 
position of a QTL. Lander and Botstein (1989) plotted logio of this ratio, obtaining the LOD Oogarithm 
of the odds) score familiar to human geneticists, using 21oge of this ratio (i.e. = 4.6 x LOD) gives the 
(equivalent) likelihood ratio test statistic more familiar to animal breeders. In this paper, to ease 
comparisons, we have converted results originally reported as LODs to likelihood ratio test statistics.

Advantages o f interval mapping
The original claims for interval mapping over single marker mapping were that it allowed better 
separation of position and effects of a QTL, required fewer progeny to detect a given effect (9 to 28% 
fewer for a backcross with a QTL at the midpoint between two markers 10 to 40 cM apart) and could be 
used to distinguish a pair of linked QTLs from a single QTL (Lander and Botstein, 1989). As far as 
differences in power between the methods are concerned, subsequent research have found these to be 
less than originally claimed. Lander and Botstein (1989) made a comparison between a test based on one 
marker and interval mapping. In practice the difference in power between the methods is reduced 
because both single markers flanking an interval would be tested individually and the power would be

Table 1. Mean estimates and their empirical standard deviation from interval and single marker 
mapping applied by ML (Knott and Haley, 1992a). Results based upon 50 replicate simulations of 1000 
F2 individuals with a QTL placed at 25 cM on a 100 cM chromosome with markers 10 or 50 cM apart.

Simulated effect Interval mapping Single marker mapping
Parameter___________ of QTL1 Marker spacing: 10 cM 50 cM 10 cM 50 cM
Additive effect (a)1 0.25 0.260 0.250 0.533 0.437
Empirical s.d. of a 0.047 0.063 0.269 0.293
Additive effect (a) 0.5 0.500 0.497 0.624 0.601
Empirical s.d. of a 0.047 0.061 0.183 0.256
iRepresents half the difference between homozygotes in residual standard deviations.
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dictated by that giving the highest test statistic (Knott and Haley, 1992a; Darvasi et al„ 1993). 
Furthermore, Lander and Botstein (1989) assumed the QTL lay midway between the markers and at this 
point there is maximum benefit from using interval mapping (Darvasi et al., 1993). Interval mapping is 
better at separating the effect of a QTL from its position on the map, giving less biased estimates with 
much lower empirical standard errors than single marker mapping (Table 1). Further advantages of 
interval mapping are that it is more robust than single marker mapping to non-normality in the data and 
hence is not biased by the presence of unlinked QTLs (Knott and Haley, 1992a). The presence of linked 
QTLs outside the interval under study can cause problems, however (see below).

ML versus least squares
Most applications of interval mapping have been by ML, however it is also possible to apply the 

method by regression and this has some advantages (Haley and Knott, 1992; Martinez and Cumow,
1992). In the regression approach the probabilities of genotypes at a QTL at a given position between 
two markers are calculated conditional upon the marker genotypes, just as they are for ML. Then the 
expected average additive and dominance deviations of individuals are calculated from these 
probabilities (e.g. Ca = PQQ - Pqq and Cd = PQq, where Ca and Crf are the expected coefficients of the 
additive and dominance deviations, respectively, and pqq , pQq and p qq are the conditional probabilities 
of being QTL genotypes QQ, Qq and qq, respectively). Regressing hie phenotypic values onto these 
coefficients provides estimates of a. and d for that position. Repeating this procedure at intervals (e.g. 1 
cM) along the chromosome indicates the most likely position of a QTL as that at which the regression 
variance (F) ratio is maximised. A likelihood ratio test statistic from the regression approach is [A 
l°Se(RSS(model omitting QTL)/RSS(model including QTL))], where there are N  observations. Thus 
estimates and test statistics from the ML and regression approaches can be directly compared (Table 2). 
As can be seen from Table 2, ML and regression applications of interval mapping produce very similar 
estimates and test statistics which are highly correlated over replicates. The regression approach does 
not utilise information on the phenotypic distribution within marker classes. Thus the similarity of 
results from the two methods indicates that the great majority of information for estimating QTL effects 
comes from the mean differences between marker classes. As the two methods produce such similar 
results and the regression method is simple and easily extended to include the effects of multiple QTLs 
and fixed effects, it will be the analytical method of choice in many situations.

2» Comparison of estimates from regression and ML applications of interval mapping (Haley 
and Knott, 1992). A QTL of effect a = 0.25 residual standard deviations was simulated at position 25 
cM on a 100 cM chromosome. Fifty replicates of 1000 F2 individuals were analysed.

10 cM spaced markers 50 cM snaced marker-;
Effect

(a)
Position Residua] 

(cM) s.d.
. Test 
statistic

Effect
(a)

Position Residual 
(cM) s.d.

Test
statistic

Mean estimate - ML 0.258 25.6 0.997 33.1 0.247 24.2 0.996 20.5Empirical s.d. - ML 0.047 3.0 0.020 11.8 0.069 10.6 0.020 8.8Mean estimate - Regression 0.258 25.6 0.999 33.2 0.247 24.0 1.001 20 5Empirical s.d. - Regression 0.048 3.1 0.020 12.0 0.068 10.6 0.020 8.8Correlation between methods 0.999 0.990 0.999 1.000 0.997 0.997 0.976 0.999
Accounting for multiple QTLs

Lander and Botstein (1989) suggested that multiple linked QTLs would result in distinct separate 
peaks in the QTL likelihood surface. They suggested that in this case a QTL should be fitted at the 
position of the higher peak and then the best position for a second QTL should be found by addition to 
thrs model. If linked QTLs are of large effect and well separated (>50 cM) on a relatively marker dense 
chromosome they may be detected as separate peaks on the likelihood curve. However this will often 
not be the case and the effect of two linked QTLs can combine to produce a single peak at a position 
between them, leading to biased estimates of QTL position and effect (Haley and Knott, 1992; Knott and 
Haley, 1992a; Martinez and Cumow, 1992). One solution to the problem is to fit two QTLs
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simultaneously, exploring all possible positions on the chromosome in a two dimensional gnd 
Computational considerations make this much easier to achieve using recession than rang: ML Results 
from simulations show that good estimates of the positions and effects of t ^ k ^ e d  Q ^ s  (even m 
presence of interactions between them) at 50 cM separation can be obtained (Haley and Kno , ).

Extension of the method above to the mapping of multiple QTLs would be intractable and 
methods have been proposed to circumvent this problem (Jansen 1993; Zeng, 1993). In these methods, 
whilst using interval mapping in one interval, additional markers are included as cofactors in the 
analvsis This has two potential benefits. First, it reduces the bias due to the effects of QTLs outside, but 
linked to the interval under study. Second, by removing the effects of unlinked QTLs it can reduce the 
reridu£d°varianceand hence increase the power to detect a QTL in the interval under study. With many 
markers it is not possible to fit them all as cofactors and so Jansen (1993) suggests selecnng the most 
important markers by regression using backward elimination. Whilst these approaches have yet to be 
fully explored, they show substantial promise for removing the effects of linked and unlinked QTLs m a 
computationally feasible way (Jansen, 1993).

S o lv e s  testing for the presence of a QTL at multiple positions (eg. 1 cM 
intervals) through the genome, thus if the usual 5% threshold for the likelihood rano test (in a ML 
analysis) or F ratio (in a regression analysis) is used type I errors will be a problem (i.e. there will be too 
many false positive results). The significance threshold will depend upon both the size of the genome 
under studyPand the density of the markers. Lander and Botstein (1989) have derived approximations to 
predict the threshold for a chosen whole-genome level of false positive results in the analysis of a 
backcross when no QTLs are present. Some examples are given in Table 3. Note, however that the 
threshold has to be increased slightly when analysing an F2.population^ and so estimaung both an 
additive and dominance effect of the QTL (van Ooijen, 1992). The threshold re tire d  m more complex 
models (e.g. when fitting additional markers in the model) has yet to be explored.

Table 3. Likelihood ratio significance thresholds for a whole genome type I error of 5% in an analysis 
of a backcross by interval mapping. Based on Lander and Botstein (1989) and Darvasi et al. (1993).

Dist
0

ance betwes 
10

m markers ( 
20

cMl
50

‘Pig’ (18 autosomes, total map length 18 Morgans; 
‘Cattle’ (29 autosomes, total map length 29 Morgans)

15.2 12.4
13.3

12.0
12.8

10.6
11.416.5

A further point concerns the null hypothesis used - that there are no QTLs segregating in the 
population. This is obviously wrong when the lines crossed had different means. We have Previously 
shown that the combined effect of a large number of QTLs of small effect will be to inflate the test 
statistic over the whole genome (Knott and Haley, 1992a) So the test statistic may be above the 
significance threshold in several places due to chance even if no QTLs of 1 ^ ^  effect are segregating. 
Fitting markers outside the interval under study (e.g. Jansen, 1993; Zeng, 1993) may ameliorate this 
problem by reducing the extent to which the test statistic is inflated by multiple linked QTLs.

Powert ortant t0 know whether a given study has the power to detect QTLs if they are present.
Power is a function of two factors - the expected test statistic produced by a QTL of any parncular effect 
and the significance threshold appropriate for the study and chosen method of analysis. The expected 
test statistic for a single O TL unlinked to any others can be adequately predicted by formula pro-sad^ by 
t janHer and Botstein (1989, see also Knott and Haley, 1992a)) for the expected likelihood ratio (ELRT):
1) ELRT = [(1 - 29)/(l - 9)] N  logJl/Q-p)] 2) ELRT = N  log* [ 1/(1-p)]
where 1) applies to a QTL midway between two markers a recombination fraction of 9 apart and 2) to a
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QTL at the position of a marker (the two extreme cases) and the QTL explains a proportion p of the total 
variance in a population of size N. Note that ELRT is proportional to the sample size and approximately 
proportional to the variance due to the QTL. These ELRT predictions can be combined with the 
thresholds in Table 3 above to calculate the QTL effect needed for 50% power of detection (Table 4).

Table 4- Size of QTL effect (% of total variance) for 50% power of detection in a backcross mapping 
study. The worst case (QTL midway between two markers) is given using ‘pig’ thresholds from Table 3.

Population size
Distance between markers fcM'i

0 10 20 50
200 7.3 6.7 7.2 9.4
500 3.0 2.7 2.9 3.9

These size of effect detectable does not increase greatly as marker spacing decreases because the 
significance threshold increases almost commensurately with the test statistic. Thus decreasing the 
marker spacing below 20 cM does little to increase the power (see also Darvasi et al.; 1993). One final 
point to note is that the power of methods based upon ML has been found to be very similar to that 
based upon least squares or regression (Haley, 1991; Haley and Knott, 1992; Simpson, 1992; Darvasi et

QTL mapping accuracy
An important issue, both for marker assisted selection and for positional cloning of QTLs, is the 

accuracy with which QTLs can be mapped. Simulation studies suggest that this accuracy may not be 
very great (Table 5). Even the most accurately mapped QTLs would represent a huge length of DNA to 
explore (assume 4 x 1.9 cM represents the 95% confidence interval of position, this would be about 8 x 
106 DNA base pairs). Furthermore, even QTL of large effect may often be placed in the wrong interval 
when markers are close together. See also Darvasi et al. (1993).

Tabi? 5- Empirical standard deviation on estimates of QTL position and number of estimates in the 
correct interval. Based upon 50 replicates of 1000 F2 individuals with a QTL placed at 25 cM on a 100 
cM chromosome (Knott and Haley, 1992a).

Simulated 
effect of QTL1

Empirical standard deviation 
Marker spacing: 10 cM 50 cM

Correct interval tout of 501 
10 cM 50 cM

0.25
0.5

7.5
1.9

14.3
4.8

36
49

47
50

Represents half the difference between homozygotes in residual standard deviations

A related problem is the confidence interval on a single estimate of position. Lander and Botstein
(1989) use a one LOD support interval (the region of chromosome over which logjg of the likelihood 
ratio is no more than one less than the maximum LOD) to provide some estimate of the confidence 

^  ^ >alogy •wit*1 Sadies (Ott, 1991), a one LOD support interval should be equivalent
to a 95% confidence interval. Simulation, however, suggests that a two LOD support interval is closer to 
a 95% confidence interval (van Ooijen, 1992). Finally, all these studies have been under ideal 
conditions, with only a single QTL on the chromosome and no other disturbing influences. As such 
factors may be present in real data, estimates of QTL position should be treated with some caution.

Conclusions
Interval mapping does have some real advantages for localising QTLs in populations derived by 

crossing inbred lines. However, problems remain, such as multiple linked QTLs, and optimum strategies 
for applying interval mapping are only just being developed. For detecting QTLs, dense marker mlros 
are not required, although they can improve the accuracy with which QTLs are mapped.
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INTERVAL MAPPING - LIVESTOCK POPULATIONS

fr is much more difficult to map QTLs in livestock populanons than it is using mbred ImeCTOSses. 
Problems include a lower heterozygosity of both makers and QTLs, exacerbated by the fact that withm 
populations QTLs of large effect may have been fixed by selection marker-QTL linkage phase will 
differ between families, pedigrees are typically complex and between family genetic vanation is present 
and can bias tests for QTLs. All of these factors reduce power and have to be accounted for in analyses.

We have previously shown how ML may be used to apply interval mapping to die analysis of data 
from a population of nuclear full-sib families (Knott and Haley, 1992b), and the method could be easily 
adapted for other structures such as half-sibs. The likelihood was developed assuming Haxdy-Wemberg 
equilibrium at the markers and QTLs and linkage equilibrium between the loci. A random component 
between families was also included to account for effect of unlinked genes or between farm y 
environmental effects and numerical integration over this component made the method computationally 
tractable. Based on the application of the method to simulated data we found that reasonable estimates 
of the simulated effects could be obtained. However, omission of the between family component from 
the model led to an overestimation of the QTL effect - the QTL absorbed some of the between family 
variance left unexplained by the model. As expected, for a given number of full-sib progeny, the> test 
statistic increased with family size and also with the heterozygosity at the marker loci. The relative 
advantage of flanking markers over single markers was greater than it was for data from inbred line 
crosses (Table 6). Finally, because the test statistic was greatly influenced by the heterozygosity of the 
markers the highest test statistic may be contained in an interval flanked by more mfcffmative markers, 
rather than the interval containing the QTL - this would lead to biased estimates of Q ^  position and 
effect. So although the ML method of interval mapping can be applied to data from outbred populations 
and produce reasonable results, there are drawbacks, not the least being that the methods are relatively 
computationally demanding.

Table 6. Mean likelihood ratio test statistics from the analysis of full-sib data. Based on 10 replicates 
of 1000 sibs with their parents, with markers of high (8 alleles) or low (2 alleles) information content 
and two sizes of interval. The additive QTL had two alleles at equal frequency with two standard 
deviations between homozygotes, which would produce a test statistic of 320 in a 20 cM interval in 
1000 F2 individuals (Knott and Haley, 1992b).

Size of 
sibships

No. of marker 
alleles

Interval 
size (cM)

Single marker 
test statistic

Interval mapping 
test statistic

20 8 20 63.2 84.8

10 8 20 44.5 57.5
10 2 20 18.1 26.7
10 8 50 16.2 21.9
10 2 50 7.4 9.5

4 8 20 17.5 19.9

Regression methods for multiple markers
Many of the methods proposed for the analysis of data from livestock have been based upon least 

squares (e.g. Niemann-Sorensen and Robertson, 1961; Weller et al., 1990). These methods use markers 
singly and thus may suffer from loss of information and potentially from biased estimates (the position 
and the effect of the QTL are confounded and the marker with the most significant effect may be the 
most informative rather than the closest). We have therefore explored the use of regression tor 
combining information from multiple markers in the analysis of data from outbred populations.

Populations derived from crosses between outbred lines (e.g. breeds or selection lines) are possible
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for all livestock species. These resemble inbred line crosses in that it may often be reasonable to assume 
that QTLs with the largest effects will be fixed for alternative alleles in the two lines. Many of the 
markers, however, will be segregating within the lines and so they will not be completely heterozygous, 
and hence informative, in the Fj cross between the lines. We have recently developed a regression 
method which uses information from multiple markers in this situation (Haley et al. 1994). This method 
is an extension of the method used for inbred lines in that, on the assumption that the lines crossed were 
homozygous for alternative QTL alleles, the genotypes at the putative QTL in the segregating progeny 
(e.g. F2 or backcross) at a given position in the genome are predicted conditional on the marker 
genotypes. For inbred lines the markers used are the two that flank the chosen position of the QTL. In 
data from outbred line crosses the markers that are informative may differ between the two parents (e.g. 
Fj's) of the segregating generation and this means that up to four markers (two flanking the QTL 
position in each parent) may be used to calculate the conditional probabilities for each individual. The 
markers used will differ between families, however, and so over the whole population it may be 
necessary to use information from all the markers in a linkage group. Subsequently, the phenotypic 
values are regressed onto the additive and dominance coefficients calculated from the conditional 
probabilities of QTL genotypes to obtain estimates of these effects at the chosen position. The position 
at which the test statistic (likelihood ratio or regression F ratio) is maximised is the most likely position 
for any QTL.

This method has been applied to simulated data and compared with results of analyses which use 
only information from markers immediately flanking the interval containing the QTL (Table 7). When 
markers were not completely informative, using all markers increased the test statistic and reduced the 
empirical standard deviation of parameter estimates compared to using only flanking markers. The 
advantage of using a relatively dense marker map is greater when markers are not completely 
informative as with a dense map there is a greater chance that information missing from a marker 
flanking the position of a QTL can be replaced by information from another nearby marker. We also 
found that the method could compensate for variation in marker information content along the 
chromosome and hence remove biases in the estimated position and effect of a QTL that occurred when 
the only flanking markers were used. This method has recently been used for the detection of QTLs 
affecting growth and fatness traits in a Wild Boar x Large White cross (Andersson et al., 1994).

Table 7, Mean likelihood ratio test statistic from the analysis of an outbred line cross. Based on 100 
replicates of 500 individuals, with three types of marker and three sizes of interval between markers. 
The additive QTL was at 30 cM on a 100 cM chromosome and was fixed for alternative alleles in the 
two lines with one standard deviation between homozygotes (Haley et al., 1994).

Marker type
Interval 

size (cM)
Mean test statistic 

Flanking All
Empirical s.d. of position 

Flanking All
Lines fixed for alternative alleles 20 50.0 50.0 4.1 4.1
4 alleles segregating per line 10 _ 39.8 4.1

20 41.3 44.4 7.6 6.5
50 - 14.6 - 12.6

2 alleles segregating per line 20 23.6 28.7 15.4 12.9

The principles of the multiple marker analysis of outbred line crosses can also be applied to the 
analysis of data from within a half-sib structured population (Knott et al., 1994). In this application we 
consider there are a number of sires each with a group of progeny, which might be either daughters with 
records or sons with progeny test results (i.e. the 'daughter' or 'granddaughter' designs of Weller et al.,
1990). The probability of each progeny inheriting each of the sire gametes at a particular position in the 
linkage group can be calculated conditional on the genotypes of multiple markers. In fact for any 
progeny only the two nearest flanking markers which are informative need be considered (these may 
differ between progeny of the same sire depending upon the progeny genotypes and whether the Ham
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genotype is known). Within sires, phenotypic values can be regressed on the difference between die 
conditional probabilities and across sires the interaction of this regression with sire provides a test for 
the presence of a QTL very similar to that which would be used for a single marker (Weller et al , 1990)_ 
Results of this approach and its comparison with the single marker approach show again that the use of 
multiple markers can increase power and provide better estimates of the QTL position and effect.

CONCLUSIONS
Interval mapping has proven to be a very useful tool for the detection and localisation of QTLs in 

populations derived from crosses between inbred lines. However, it is only now that problems, such as 
diat of mapping multiple QTLs, have been recognised and methods are being developed to deal with 
them that the full power of interval mapping can be realised. As far as outbred lines are concerned, the 
power of interval mapping has yet to be fully harnessed. Because of the low mformaaon content of 
markers in outbred populations, using only the markers flanking an interval is not enough, and can lead 
to reduced power and biases in estimates of QTL effect and position. It is necessary to use ^1 makers in 
a linkage group to fully utilise the information present. This approach could be implemented within a 
number of^ontexts - full ML, or mixed model (e.g. Goddard, 1992), or regression. The advantage of ful 
ML is that it uses information on the distribution within marker classes which is neglected by the other 
methods However, at least for inbred lines, omitting this information in a regression analysis does not 
result in very great loss of power. Regression approaches using multiple markers can in some 
circumstances be applied to outbred populations and can provide a useful increase in power and 
reasonable estimates of the effects and position of a QTL. It is likely that improvements m computer 
technology and methods such as Gibb’s sampling will allow information from multiple markers in 
complex pedigrees to be fully utilised. However the methods are applied, future attempts to locate QTLs 
in livestock should attempt to harness the principles of interval mapping and utilise multiple markers in 
order to extract maximum information from the hard-won data.
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