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S U M M A R Y
Bio-economic simulation is the most promising technology for evaluating production systems. 
The genetic inputs to simulation models should satisfy two criteria: (1) they must indicate 
underlying genetic potential—genetic potential that is not compromised by the constraints 
commonly found in field data—and (2) they must measure traits that are logical inputs for 
mechanistic modeling. Physiological breeding values (PhBVs) are such inputs. They are the 
conceptual offspring of a marriage of statistical and biological approaches. Researchers need to 
develop methods for translating current genetic predictions to PhBVs, likely using an 
assortment of techniques, some purely statistical, some deterministic.
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IN T R O D U C T IO N : A  S L O B O V IA N  C A SE  ST U D Y
T h e p ro b lem . You are an academic animal breeder, and you have been given the task of 
optimizing management and determining breeding objectives for CIC Inc., a large commercial 
beef cattle enterprise in Lower Slobovia. It is not a simple job. CIC’s owners want you to 
examine a variety of crossbreeding systems, supplementation schemes, marketing alternatives, 
and other management options. And there is the question of what bulls to use. You will need to 
estimate typical production for each management scenario/biotype combination and calculate 
income, costs of production, and net returns. You must be careful to abide by constraints on 
available land, capital, and labor, steer clear of biotypes that are not well adapted in high-stress 
years, makp sure that the production system is sustainable—for example, if you opt for larger 
cattle, you should avoid overgrazing by reducing herd size. The owners have high expectations 
of you and not a lot of time.

T h e so lu tio n . You need a tool and a powerful one. You need a bio-economic computer model 
that will simulate the many combinations of management scenarios and biotypes, allowing 
you, in effect, to co-optimize all these elements. Such models exist. Researchers have been 
working on them for years (Sanders and Cartwright 1979; Keele et al. 1992; Baker et al. 1992; 
Tess and Kolstad 1993; Williams and Jenkins 1996; Williams and Jenkins 1997). You review 
the literature, ask around, and choose a model that can simulate the kinds of systems you are 
interested in, has a reputation for sound biology, and is well documented and user friendly. The 
acronym for this particular model is BFBM (Big Friendly Beef Model), and it is state-of-the- 
art, the Cadillac of beef production models. It effectively simulates the influence of 
environment on forage quantity and quality and on animals’ feed intake, energy partitioning, 
growth, body composition, lactation, fertility, and death loss. It can handle any and all cattle
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biotypes and accounts for the effects of hybrid vigor. Besides being biologically sophisticated, 
BFBM is an individual animal model capable of simulating cattle populations with appropriate 
amounts of randomly generated genetic and environmental variation. It is just the model you 
need to determine the impact of specific sires on the CIC herd.

U sin g  E P D s a s gen etic  inputs. Issue 1: traits. One of your first tasks is to genetically 
characterize the existing CIC herd in order to establish a benchmark for future comparisons. 
Luckily, CIC has kept immaculate records over the years, and you have access to the EPDs of 
all sires and maternal grandsires of CIC cows. With a little arithmetic, you are able to build a 
genetic profile of the herd based on EPDs.

There is a problem, however. Some of the traits for which you have EPDs—traits like birth 
weight and mature weight—are listed as genetic inputs to the simulation model. But other traits 
are not. Where you have an EPD for the maternal component of weaning weight (measured in 
kg of weaning weight), the model asks for peak milk production potential (measured in kg of 
m i l k  per day); where you have a prediction of fertility in the form of an EPD for stayability, the 
model wants a value for interval from calving to first heat and for probability of conception. 
The traits required by the model do not match the traits with available EPDs.

Issue 2: means. There is another problem with EPDs. EPDs (or, if you double them, EBVs) are 
expressed as deviations from means. They have values such as +5 and -14. The simulation 
model requires genetic potentials that have the appearance of phenotypic values, i.e., values 
that include a mean. An appropriate input value for mature weight would not be -18 kg, but 
rather 507 kg.

So, add a mean, you say. But what mean? Means vary for the different breeds because either 
the breeds are genetically different, their genetic bases or zero values are defined differently, or 
both. Luckily, Slobovian geneticists have created a breed table that allows you to locate the 
genetic bases used by Slobovian breed societies on a single scale. The Slobovian breed table 
is o  ties in nicely with a similar American table, making it possible to compare Slobovian 
bases with the bases from which most imported sires deviate. Now the problem is reduced to 
finding a single constant for each trait. Add these constants to breed adjusted EBVs, and you 
have the kind of genetic inputs needed by the simulation model. You can estimate the constants 
through a process of trial and error, inputting different sample values until the performance of 
simulated animals mirrors historical performance. The issue of means looks tractable.

Issue 3: G x  G interactions. A more subtle problem. Some Slobovian breeds—the Slobovian 
White, for example—were once dual purpose breeds and milk heavily. Breeds like the 
Slobovian Red, on the other hand, were bred to be draft animals and produce little milk. 
Assuming both breeds are managed similarly, Slobovian Whites, on average, experience more 
lactation stress than Slobovian Reds, and are phenotypically less fertile as a result. The range 
of stayability EPDs is greater for Whites than Reds, and estimates of genetic variance and 
heritability of stayability are greater for Whites as well. But are Whites truly more genetically
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variable than Reds for the underlying trait of fertility? Could it be that the stressful 
“environment” experienced by Whites causes them to express their potential for fertility to a 
degree that the less stressful environment experienced by Reds does not? Viewing the matter 
from a different perspective, does a 1-percent change in stayability EPD in Slobovian Whites 
indicate the same difference in underlying genetic potential for fertility as a 1-percent change 
in stayability EPD in Slobovian Reds? Are stayability EPDs for the two breeds expressed on 
the same scale? These questions are important because if you are to simulate crosses of 
Slobovian Reds and Whites and predict weaning performance of crossbred calves and 
production of crossbred daughters, you need comparable genetic inputs from both breeds.

From a statistical standpoint—that is to say, from a traditional animal breeding standpoint—the 
issue is one of genotype by genotype interaction. Differences in realized fertility between 
animals differing in genotype for fertility depend on their genotypes for milk production. When 
milk levels are low, almost all cows breed back; measurable differences in fertility between 
inherently highly fertile females and inherently lowly fertile females are likely to be small. But 
at high levels of milk production, these differences are larger. The potential interaction is 
depicted schematically in Figure 1(a).
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A similar G x G  interaction affects milk production. Differences in actual milk production 
between dams differing in genetic potential for milk production depend on their calves’ 
genotypes for preweaning growth rate. When calves’ potentials for growth rate are low, 
measurable differences in milk production between females with high genetic potential for 
milk production and females with low milk potential are small. But at high levels of calf 
growth potential, these differences are larger (Figure 1(b)). The G x  G interaction affects the 
relationship between EPDs for the maternal component of weaning weight and underlying 
genetic potential for milk production. The relationship is stronger in breeds with high growth 
and low milk production and weaker in breeds with low growth and high milk production.
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More importantly, a 1-kg difference in milk EPD in high growth, low milk breeds connotes a 
considerably smaller difference in true milk production potential than a 1-kg difference in EPD 
in low growth, high milk breeds (Enns 1995). Maternal EPDs for the two types of breeds are 
expressed on different scales.

Issue 4: G x  E and G x  G x  E interactions. And then there are genotype by environment 
interactions. You have worried about these for some time—ever since you read the paper by 
Frisch (1981). He suggested that the set of genes responsible for growth in a feedlot 
environment is different from the set of genes responsible for growth in a nutritionally stressful 
range environment. His work implied that the individuals that grow fastest in the feedlot do so 
because of their inherent propensity for growth, while those that grow fastest on range do so 
because of inherently low maintenance requirements or better genotypes for other adaptability 
traits. Because there are no feedlots in Lower Slobovia—young animals are grown out on 
grass—this particular G x  E  interaction concerns you. Will growth EPDs published in 
American sire summaries be useful indicators of growth under harsh Slobovian conditions?

The deeper you investigate, the more complex the interactions you discover. The magnitude of 
G x  G interactions often depends on environment, creating G x  G x  E  interactions. 
Furthermore, these interactions involve only the transmittable portion of genetic potential. In 
simulating crossbreds, you must also be concerned with interactions involving hybrid vigor 
(HV). There are potential G x  HV, G x G x  HV, and G x G  x  HV x  E interactions, any of which 
can make prediction of phenotype more difficult.

The classical genetic model implies that a 1-unit change in genetic value results in a similar 1- 
unit change in phenotypic value. The model holds reasonably well when applied to a single 
population in a single environment. But mix genetically diverse populations and (or) place 
them in substantially different environments, and interactions cause the model to lose validity. 
A 1-unit change in a sire’s EPD may result in considerably more or less than a 1-unit change in 
his offspring’s performance.

Inevitably, G x  G, G xE , and G x G  x E  interactions and many of the interactions involving 
hybrid vigor are caused by the inability of animals to completely express their genetic potential 
for a trait. Sometimes the physical environment is limiting, as in the case of growth rate on 
range. Other times the physiological environment is limiting. Cows with little milk may not 
express their genetic potential for fertility. Cows with low-growth calves may not express their 
genetic potential for milk production. Whatever the constraint, the inability of animals to 
express genetic potential distorts the relationship between measures of breeding value—i.e., 
EPDs—and true genetic potential. This distortion causes EPDs from different populations to 
mean different things. And combining EPDs from different sources in a simulation model can 
be, in some cases, like mixing apples and oranges.

Why biological models require the genetic inputs they do. Good biological models are 
largely mechanistic, that is, they use equations designed to reflect fundamental biological
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processes. For example, tissue growth is typically modeled as a function of energy intake, 
current body composition, physiological maturity, and associated requirements for 
maintenance, fat and lean growth, and so on. Sometimes, particularly when our understanding 
of a biological process is weak, these models rely on empirical relationships, often regression 
equations derived from one or more data sets. If a model is to be applied broadly, however, 
empirical relationships are risky; they work well under conditions similar to those of the 
original data sets but not so well under other conditions. Given a choice, modelers generally 
prefer mechanistic relationships.

For a mechanistic model, the only workable genetic inputs are those that represent an animal’s 
genetic potential—its maximum performance given optimal conditions. The model begins with 
these values, then adjusts them downward (if necessary) to reflect the effects of a less than 
perfect environment. For the model to work correctly, its genetic inputs must have consistent, 
universal meaning. EPDs, of course, do not represent genetic potential in this sense because 
they are derived from populations in which certain genotypes never have the opportunity to 
achieve their potential, populations affected by the interactions mentioned earlier. And for the 
same reason, EPDs do not have universal meaning.

The idea behind a mechanistic model is to start with genetic potentials, add environmental 
conditions, and reconstruct via the deterministic equations of the model the biological 
relationships that cause differences in animal performance. If all works well, these differences 
will often form the patterns of data that, when analyzed statistically, are interpreted as 
interactions. We will have recreated something very similar to real data, and if our model is 
good enough—i.e., sufficiently correct and sufficiently mechanistic—we can recreate realistic 
data under a variety of genetic and environmental conditions.

The traits simulated in a mechanistic model are those that make mechanistic—as opposed to 
empirical—sense. From an empirical standpoint, a breeding value for the maternal component 
of weaning weight is the logical, and perhaps the only possible way of representing milking 
ability in beef cattle. But it is a totally illogical genetic input to a mechanistic model. The 
model requires direct information about a cow’s potential to produce milk, not weaning weight. 
Similarly, stayability represents a convenient, statistical way of measuring female fertility, but 
would be cumbersome to deal with in a biological model. Better candidate traits from a 
mechanistic standpoint are age at puberty, interval from calving to first heat, and probability of 
conception.

Genetic inputs to biological models should, therefore, meet two conditions. First, they must 
represent underlying genetic potential—genetic potential that is not compromised by the 
constraints so commonly found in field data. Second, they must represent traits that are logical 
inputs for mechanistic modeling. Not all traits we measure are.

PHYSIOLOGICAL BREEDING VALUES
We coined the term physiological breeding value (PhBV) so that there would be a name for the 
kind of genetic input required by biological simulation models. “Physiological” suggests the
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biological, mechanistic roots of such a value, and “breeding value” suggests its statistical 
counterpart. A PhBV is a lot like our conventional notion of breeding value; it represents the 
transmittable portion of an individual's underlying genetic potential for a trait. Like breeding 
values, PhBVs of relatives are correlated, PhBVs for different traits may be correlated as well, 
and the best prediction of the PhBV of a future offspring is the mean PhBV of its parents. What 
makes a PhBV different from a breeding value, however, is the way in which genetic potential 
is defined. In this context genetic potential refers to performance potential under optimal 
conditions. It indicates how an animal might perform if it were given every advantage. A calf s 
physiological breeding value for weaning weight, for example, is a predictor of its weaning 
weight if it had the best mother, nutrition, and all-around environment possible.

Unlike conventional breeding values, PhBVs are not population dependent. While an 
individual's breeding value for a trait depends on the genetic merit of the population that 
individual belongs to, its PhBV for the trait does not. An Angus cow, when considered a 
member of the American Angus population, might have a breeding value for mature weight of 
+46 kg. Considered a member of the Slobovian Angus population, the same cow might have a 
breeding value of +-80 kg. But her physiological breeding value would remain the 
same—perhaps 590 kg—regardless of the population she belongs to.

PhBVs are also environment independent, that is to say, they do 
not change under different environmental conditions. As genetic 
potentials, they predict performance potential in just one 
environment—the optimal one.

PhBVs are, however, model dependent. Different biological 
models may define them differently. For example, in one model,
PhBV for yearling weight may be defined as genetic potential 
for empty body weight at a year of age given a certain 
percentage of chemical fat in the empty body. In another model, 
the same PhBV may be defined similarly but without any 
constraint on body condition—i.e., in as fat a condition as 
possible.

PhBVs alone do not indicate phenotype; they don't tell us how 
animals will perform in a given environment. But when they are 
combined with information about breed composition (for 
calculating hybrid vigor), physical environment, and management in a simulation, the 
simulation model translates them into performance measures. The entire process, from EPDs to 
profit prediction, is depicted in Figure 2.

FROM EPDS TO PHBVS
How difficult will it be to transform EPDs to physiological breeding values, to “map” EPDs to 
a physiological scale? Enns (1995) used the Colorado Beef Cattle Production Model (Bourdon
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1992) to simulate 20 years of records from five 300-cow herds representing breeds with low 
(L), medium (M) or high (H) growth and milk potential (LL, MM, HH, HL, and LH, where the 
first letter refers to growth and the second to milk). From these five data sets he estimated 
genetic parameters and predicted within-breed EPDs using Method R and animal-model 
BLUP. He then developed regression equations to predict physiological breeding values— 
known values generated by the simulation model—from EPDs.

Results for yearling weight and milk production are shown in Figure 3. EPDs for the direct 
component of weaning weight (WWd) from the five breeds mapped nicely to the physiological 
scale for yearling weight—the trait determining early growth potential in the simulation model 
(Figure 3(a)). Regardless of breed, a unit difference in EPD for W W d translated into a nearly 
constant difference in physiological breeding value for yearling weight. That suggests that 
mapping EPDs for growth to a physiological scale is relatively straightforward.

The same may not be said for milk production. The mapping of EPDs for the maternal 
component of weaning weight (WWm) to the physiological scale for theoretical peak milk 
production differed for each breed (Figure 3(b)). For example, a unit difference in EPD for 
WWm in the HL breed indicated a much smaller difference in actual potential for milk 
production than did a unit difference in EPD in the LH breed. Maternal EPDs from the LH 
breed varied little, ranging from just -.6 to +.5 kg compared to a range of -24.1 to +18.6 kg in 
the HL breed. Developing good predictions of PhBVs for milk production, especially for 
breeds like the LH population, will be difficult.
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The methodology for translating EPDs to PhBVs is yet to be developed and is a fertile area for 
future research. The kind of “reverse simulation” technique used by Enns (1995) is one 
alternative, though a far from perfect one. Purely statistical approaches may work too, 
especially if they combine purebred and crossbred data. Perhaps physiological maps will be
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built much like chromosome maps, rough at first, more precise later as researchers combine 
information acquired using a variety of techniques.

Should PhBVs replace EPDs as the genetic predictions of choice to be published in sire 
summaries and sale catalogs? The advantage of PhBVs is their universality; they can be 
direcdy compared across breeds and environments. But PhBVs may be too easily confused 
with phenotypic values, and they may be defined differently depending on the particular model 
they are designed for. EPDs do not have the universal meaning of PhBVs, but they have the 
advantage of familiarity, and a unit change in EPD, at least on a within-breed, within- 
environment basis, does indicate a unit change in actual performance.

IMPLICATIONS
Quantitative geneticists have traditionally relied on statistical tools, particularly for genetic 
prediction and breeding program design. With the advent of biological simulation models, it 
may be time to combine statistical and mechanistic methods. Physiological breeding values, 
with their biological underpinnings and statistical properties, represent a marriage of the two 
approaches. But PhBVs are just the beginning. In the future, as we learn more about biological 
relationships, we may use deterministic equations to do many of the jobs that genetic and 
environmental correlations do now. We may use new tools to move beyond the limitations of 
the simple, linear genetic model.

REFERENCES
Baker, B.B., Bourdon, R.M. and Hanson, J.D. (1992). Ecological Modeling 60:257.
Bourdon, R.M. (1992) Notes for AN681: Computer Simulation of Beef Cattle Production 

(mimeo).
Enns, R.M. (1995) PhD Thesis. Colorado State University.
Frisch, J.E. (1981) J. Agric. Sci., Cambridge 96:23.
Keele, J.W., Williams, C.B. and Bennett, G.L. (1992) J. Anim. Sci. 43:418.
Sanders, J.O. and Cartwright, T.C. (1979) Agric. Systems. 4: 217.
Tess, M.W., and Kolstad, B.W. (1993) J. Anim. Sci. 71(Suppl. 1): 105.
Williams, C.B., and Jenkins, T.G. (1997) Agric. Sys. (submitted).
Williams, C.B., and Jenkins, T.G. (1997) J. Anim. Sci. (submitted).

2 3 4


	N01-Session 30C
	PHYSIOLOGICAL BREEDING VALUES RETHINKING THE WAY WE EXPRESS GENETIC VALUES FOR IMPROVING PRODUCTION SYSTEMS
	R. M. Bourdon
	R. M. Enns




