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SUMMARY
A short overview of the selection problem and its latent effects on animal genetic evaluation, as 
well potential ways of accounting for selection with their possible limitations were presented. 
Clearly there is not a general statistical solution for the selection problem even though the 
understanding about genetic and statistical effects of selection has increased.
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INTRODUCTION
There are many types of selection forces that influence the data collected from commercial 
livestock operations. Some examples are non-random selection and mating of breeding animals 
(parental selection), sequential selection, culling of animals before records are official, 
preferential treatment, selective reporting, and misclassification or manipulation of contemporary 
groups. Parental selection is the primary process by which genetic improvement can be made in 
livestock populations, and consequently it is invariably present in animal breeding work.

Selection of any type may cause problems for estimating genetic parameters and breeding values 
and may require specific statistical treatment. Data commonly available to animal breeders from 
the field are invariably provided by herds in which artificial selection has been practised for a 
long time. Consequently, the usual assumption of random sampling invoked for estimation and 
prediction is no longer valid (Henderson 1984). Inferences based on such data may be misleading 
(Fernando and Gianola 1990). A basic challenge still lies in questioning the supremacy of 
current methods such as Best Linear Unbiased Prediction (BLUP) via Mixed Model Equations 
(HMME) (Henderson 1963) and Restricted Maximum Likelihood (REML) (Patterson and 
Thompson 1971) when selection is known to have occurred (Foulley 1990). Bayesian analysis 
of selected data (e.g. Sorensen et al. 1994; Van Tassell et al. 1995) and Bayesian inferences seem 
to be able to handle different types of selection. The Gibbs sampler, as a tool for numerical 
integration, allows broad application of Bayesian analyses in animal breeding (Wang et al. 
1994a; Wang et al. 1994b; Rodriguez et al. 1996). Non least squares methods have also been 
suggested as an alternative to handle selected data (e.g. Gianola 1990; Simianer 1991).

The objectives of this paper were to review selection problems and their possible effects on 
genetic evaluation, and tackle potential ways to appropriately account for selection under a 
statistical point of view, assuming an infinitesimal additive genetic model.

5 0 1



SELECTION PROBLEMS
Henderson (1984) gave an overview of the possible statistical consequences of genetic selection 
of animals. An assumption with HMME is that the expected value of every element of a (vector 
of breeding values) is 0. If animals result from a long-term selection program, then the expected 
value of breeding values in later generations should be different from 0. Further, for the records 
of selected individuals, all variances are reduced and non-zero covariances are generated between 
previously uncorrelated effects, such as between a and e (residual effects).

An important consequence of culling before an animal leaves an observation or of selective 
reporting is the change of the null expectation of the Mendelian sampling effects which is a basic 
assumption for the nice properties of individual animal models. The effect of preferential 
treatment, selective reporting, and data manipulation have been discussed (e.g. Mallinckrodt et 
al. 1993, Tierney and Schaeffer, 1994; Weigel et al. 1994) and shown to be important for data 
from livestock populations.

PREDICTION OF BREEDING VALUES UNDER SELECTION
In 1975 Henderson proposed methods based on the results of Pearson (1903) assuming 
multivariate normality. Henderson (1975) used the matrix L to describe the selection process, 
and assumed under repeated sampling that this matrix is fixed, and that only samples that can 
use this L would be kept. The real nature of selection processes, however, would suggest that L 
is random (Thompson 1979; Gianola et al. 1989).

Using Pearson s selection model, assuming known dispersion parameters and giving conditions 
for ignoring selection, Gianola et al. (1988) concluded that selection can be ignored when the 
distribution of the culling variate w and the conditional distribution of w given a and y 
(observation vector) do not depend on unknowns being estimated or predicted. When selection 
is based on linear or nonlinear functions of the data, a sufficient condition for “ignorability” of 
selection is that L’X=0 or equivalently that the culling variate does not depend on 0 or is within 
levels of fixed effects. Gianola et al. (1988) also showed that when selection is based on functions 
of a  and e the selection process can sometimes be ignored and to yield more genetic progress even 
though the predictors obtained are biased.

Several researchers have considered the theoretical effects of selection on prediction of breeding 
values or estimation of variance components under a likelihood or Bayesian point of view (e.g 
Gianola and Fernando 1986; Goffinet 1987; Gianola et al. 1989; Fernando and Gianola 1990; 
Im et al. 1989; Sorensen 1996). In the likelihood approach, if the history of the selection process 

is contained in the data, then the likelihood function has the same mathematical form with or 
without selection and inferences could be made ignoring selection. This is ffue for any 
distribution, any likelihood based method of inference, for linear or nonlinear estimators and for 
non translation invariant (regarding to fixed effects) selection criteria.

HMME could be derived by maximization of the joint posterior distribution of 0 and a (taking 
a flat prior for 0) with respect to 0 and a (Henderson et al. 1959). The modifications needed to
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the HMME for obtaining BLUP when selection is not based on translation invariant functions, 
even when all data that led to the current population are available (Henderson 1975), seem to 
contradict the likelihood principle (Goddard 1990). However Goffinet (1983) and Fernando and 
Gianola (1990) argued that BLUP of a  (a=C'V’1(y-X|5)) under normality is identical to 
E(c|w ,X ,Z,A,R,oze), where w is any set of n-r linearly independent translation invariant 
functions of y and n and r are the order and rank of y and X respectively. If selection decisions 
are based on any function of a subset of w, then the information used to calculate the posterior 
conditional mean contains the whole history of the selection process, and BLUP ignoring 
selection will be unbiased. One can express y as y= X(5+w. If selection decisions are based on a 
subset of y, the posterior density constructed using only w will not in general be the same as 
when selection takes place, and selection has to be described when the likelihood function is 
defined. With the Bayesian approach, E(ajy,X,Z,A.R,o g) can be calculated even when p is 
unknown. The uncertainty about P is expressed in the form of a prior density. If selection is based 
on y or on a subset of y, then E(«| y,X,Z,A,R,a e) is calculated ignoring selection. When the 
prior density of P is taken to be constant, E(a|y,X,Z,A,R,o"e)=E(a|w,X,Z,A,R,o~e) and the 
previous discussion holds.

ACCOUNTING FOR SELECTION IN GENETIC EVALUATIONS 
Parental selection. To account for parental selection the following ideal conditions should be 
available: a) complete pedigrees back to a base population of non selected, non related, and non 
inbred animals (Sorensen and Kennedy 1984; Kennedy and Sorensen 1990); and b) data on all 
candidates for selection (Henderson 1975; Goffinet 1983); or c) knowledge of the selection 
process and distribution of selection criteria (Henderson 1975; Im et al. 1989; Fernando and 
Gianola 1990). The first two conditions guarantee that likelihood based inferences not accounting 
for selection are the same as those obtained considering selection regardless of translation 
invariance of the selection criterion or its form (linear or nonlinear) (Gianola and Fernando 1986; 
Im et al. 1989 and Fernando and Gianola 1990). Even if the first and second conditions are met, 
in general, an additional condition of translation invariance of selection criteria must be verified 
for HMME to yield BLUE and BLUP, otherwise unbiasedness does not hold. The third condition 
is generally needed when data are missing. Im et al. (1989) showed that if data are missing at 
random, inferences could be made using the likelihood function without accounting for the 
missing data process. Otherwise, the missing data process has to be described and included in 
the likelihood function.

Schenkel and Schaeffer (1997) used simulation to generate a phenotypically selected population 
with 7.5% and 15% randomly missing pedigree information. Strongly biased estimates of 
additive genetic and residual variances were obtained with both Bayesian and RE ML procedures 
when fixed effects other than an overall mean were present. Also the predicted breeding values 
by HMME using the REML estimates of variance components, and by Bayesian procedure 
showed increased mean square error and reduced accuracy as selection accumulated. Assuming 
a proper informative prior for the fixed effects in the Bayesian procedure reduced the bias of the 
variance component estimates but they were still different from the values of the base population. 
The importance of the relationship matrix, when it is complete and correct, in accounting for
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selection effects and assortative mating in genetic evaluations has been shown theoretically and 
through simulation (Poliak and Quaas 1981a; Sorensen and Kennedy 1984; Kennedy e t al. 1988). 
Kennedy and Sorensen (1990) showed that the relationship matrix accounts for decline in 
variance due to genetic drift and circumvents (if records of all animals are available (van der 
Werf and de Boer 1990)) further reduction in variance due to gametic disequilibrium. They also 
showed that after repeated cycles of selection and mating, the equality VAR(a)= A a2a, where a2a 
the additive genetic variance before selection, still holds, assuming multivariate normality.

Woolliams and Thompson (1994) showed that if all genetic relationships to an unselected, 
unrelated base population are available, then breeding values of all animals can be expressed as 
the sum of their own Mendelian sampling (MS) effect plus the MS effects of their ancestors going 
back to the base animals, whose expected breeding values are equal to MS effects. Therefore 
under an infinitesimal model the change in expected value of a is accommodated through a 
complete and correct A matrix. However with field data A is barely complete or fully correct. 
Long e t a /.(1990) showed that with 20% random errors in the pedigree file the advantage of 
individual animal model (BLUP) over phenotypic selection was halved to 3.8 and 14.6% for 
h“=0.53 and 0.13, respectively, even though the swine population analyzed was randomly 
selected. Mallinckrodt e t a/.(1993) studied the impact of data falsification and selective reporting 
on estimation of genetic parameters in beef cattle using REML and concluded that reliability of 
estimates could be improved by analyzing representative data subsets known to be completely and 
accurately reported.

Genetic groups (GG) have been used to account for missing pedigree information in genetic 
evaluation (Westell 1988). Quaas (1988) noted that complex definitions of GG could be 
confounded with other fixed effects in the model. Pieramati and Van Vleck (1993) through 
simulation have shown that the use of GG to account for prior selection leads to underestimates 
of additive genetic variance compared to an unselected base population, and raised the question 
of which variance to use on genetic evaluation when GG are included. In practice, the use of fixed 
GG implies non translation invariant selection.

The best method for evaluation of selected animals depends not only on the selection process but 
also on the information available, and on criterion for judging alternative methods. Generally 
two kinds of information are available: a) the records of animals and their relatives (a posteriori 
information), and b) knowledge about the specific population from which an animal comes (a 
priori information). Assume an animal model represented by y= Xfi + Za + e (l) , where y 
is a vector of phenotypic values on individuals, X and Z are incidence matrices, {3 is a vector of 
fixed effects, a is a vector of additive genetic effects multivariate normally distributed (s,Ao2a) 
and e is a vector of residual effects multivariate normally distributed (0,R o2e). In absence of 
selection, E(y)= Xp (s is a null vector) and var(y)= V = ZAZ'o2a + Ro2e, assuming a and e 
independent. Ro"e is a known variance-covariance matrix of residual effects, and o2a is the 
known genetic variance in the base population. Now assume that due to genetic selection s is not 
null while the other assumptions still hold. If one derives BLUE/ BLUP under these conditions 
maximizing the function F = m’Am + L'VL -m'AZ'L -L'ZAm +(L’X - K’)0i+(L’Z - m’)02 to
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obtain the set of equations to predict k'P + m'a by L'y, where 0j are LaGrange multipliers, the 
final equations are Generalized Least Squares (GLS) with a considered as fixed. GLS in this case 
gives solutions equivalent to Weighted Least Squares (WLS) because Z is included in V. 
Therefore, no use is made of a priori information about genetic variances. However, if the 
criterion for choosing the best estimator/predictor is minimum mean square error, then a non 
least square estimator/predictor could be preferred, such as ridge type estimators. Under a 
Bayesian setting, the use of prior information implies solutions with smaller risk under a 
quadratic loss function and inadmissibility of the previous estimators/predictors (Gianola and 
Fernando 1986). Gianola and Fernando (1986) stated that the statistical property relevant to 
genetic improvement is the correlation between predictor and predictand, but under selection is 
often difficult to calculate it using analytical means. For this situation, simulation studies have 
been used.

Fries and Schenkel (1993) proposed a modification of HMME to account that E(a) is no longer 
null without relying on a complete A matrix to obtain unbiased estimates of fixed effects. The 
new equations were called Lush's Mixed Model Equations (LMME) and for an individual animal

model are: X 'R 'X X 'R 'R -1/ ) '1(J 'R _1/+A -1) PL x 'r  ~*y . They showed that LMME
I 'R 'X (I'R-'l+A-1) I ' R lY

yields unbiased estimators of fixed effects and consistent predictors of random effects regardless 
if A is complete or not, even when E(a) is different from 0. Brito (1992) argued that an increase 
of 5% in selection response in beef cattle could be achieved by LMME over HMME. Meanwhile 
computational difficulties arise because LMME are not symmetric and have rank deficiencies 
equal to GLS.

Torres Jr. and Braccini Neto (1995) used a sire model to compare LMME to Regressed Least 
Square (RLS), HMME without genetic groups (MMw), and HMME with genetic groups (MMg). 
Offspring of related sires were simulated and distributed into two different environments by two 
different methods. The first was random distribution of progeny, and the second was by 
association of sire genetic values with environmental values. Relationships among sires were used 
or not used. Genetic groups were formed on the basis of the association of sires with the 
environment. For all methods the estimators of environmental effects were empirically unbiased 
except for MMw when sires were associated with one environment. In this case the estimators 
were biased regardless of the use of relationships among sires. When sires were not associated 
with environments, the correlation between the true and predicted genetic values of the sires 
using MMw and LMME were not different, but were better than the other methods. When an 
association was present, then MMg was better than LMME which was better than the other 
methods. With field data LMME will probably be better because a perfect definition of genetic 
groups may not be possible in that situation.

Non least squares estimators may be an alternative to least squares estimators under selection. Let 
the class of estimators include biased estimators, and consider the mean squared errors (MSE)
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of estimating the parameter 0: MSE= E[(0-0)'(0-0)]= Var(0) + [bias(0)]2 , this is a different 
criterion function than the one that leads to the least squares estimator. Let Xl > X2 > ... * X 
be the ordered eigenvalues of W’W (W= [X Z]). Hoerl and Kennard (1970) h p e  noticed that, 
for 0= least square estimate, MSE= E[(0-0)'(0-0)] = c 2e trace (W ’W)'1 = ° e K  . But 
E[(0-0)'(0-0)]= E(0'0) -0'6, so, E(0 '0)= 0'0 + a] x f 1 ^ 6'0 + a‘ X'p\  Thus even though 
0 is unbiased for 0 , 0’0 is not unbiased for 0 ’0  and if the smallest eigenvalue Ap is near zero, then 
on average 0’0 will be much too great When Xp is small and MSE is of interest, substantial gain 
over least squares is possible. These alternative estimators have the common characteristic that 
they will give an estimate that is more shrunk than least squares, so these techniques shrink the 
least squares estimates normally toward zero (e.g. Ridge and James-Stein estimators). 
Gianola(1990) presented theoretical arguments and empirical evidence that nonlinear, biased 
estimators and predictors of the James-Stein form can yield a considerable improvement over 
BLUE and BLUP in terms of MSE and absolute error in a sire model with fixed GG effects.

Weigel et al. (1991) simulated a balanced sire model with fixed GG and compared different 
biased estimators of GG effects to ML estimator (BLUE under normality) and found great 
improvement with modified minimum MSE (STM) that shrinks ML estimator to its average value 
and with estimated STM (ESTM) in terms of MSE. However, a function of these estimates (linear 
regression on GG number) was very poor in terms of MSE. Simianer (1991) presented empirical 
evidence that a nonlinear, biased estimator of fixed GG (obtained by estimated minimum MSE 
under a situation of low heritability, unbalanced data, and medium selection intensity) was almost 
twice as superior as BLUE/BLUP in terms of effective selection differential.

The superiority of non least square procedures appears especially in situations which are less 
favourable from an estimation point of view, such as low heritability, imbalancedness, low 
connectedness, and lack of independence of genetic and environmental structure (Gianola 1990; 
Simianer 1991) which are often found in livestock populations such as beef and dairy cattle.

Sequential selection. Sequential selection has been discussed in genetic evaluation of beef cattle 
(Eriksson et al. 1981; Poliak and Quaas 1981b), in dairy cattle (Henderson 1973 ; Poliak et al.
1984) and in pigs (Long et al. 1991; Appel et al. 1994). Multivariate evaluations have been used 
to overcome this kind of selection problem. However, in cases without any records on the culled 
animals, i.e. the history of selection processes is not known, the situation becomes more 
complicated and the magnitude of the bias will depend on the culling intensity and (co)variances 
of the traits (Poliak et al. 1984; Appel et al. 1994). The problems associated with parental 
selection still may remain for the traits under selection despite multivariate analysis. Henderson 
(1990) called attention that multivariate analysis are much more sensitive to errors in 
(co)variance parameters that are more likely to happen with selected data.

Preferential treatment and data manipulation. Removal of preferential treatment (Tierney and 
Schaeffer 1994), selective reporting (Garrick et al. 1989), and data manipulation effects by 
statistical methods seems to be less promising than attempts to control these selection problems 
by other means such as contract herds for progeny testing of bulls under conditions free of
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preferential treatment or selective reporting, or use of representative data subsets known to be 
completely accurately reported (Mallinckrodt et al. 1993). To alert for the consequences of this 
sort of selection in the genetic evaluations is an important task of animal breeders.

CONCLUSIONS
Despite all of the investigations on selection effects on estimation of genetic parameters and 
breeding values, no general solution was found. However parental selection should be studied and 
kept in mind since it is always present in animal breeding work. Other types of selection such as 
preferential treatment, selective reporting, and data manipulation should be minimized through 
clarification about how harmful they could be for the whole genetic evaluation system. Still the 
better way to handle this sort of selections is to avoid them as much as possible.
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