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INTRODUCTION 
Somatic cell count is an accepted indicator of mastitis. However, measurements of cell count 
are subject to noise and outliers, which decrease their potential use in decision support. 
Statistical tools to separate noise from biologically relevant changes can help improving the 
interpretation of somatic cell count (SCC) data. The extension (Smith and West, 1983) of the 
multiprocess Kalmanfilter (Harrison and Stevens, 1976) to provide probabilities of different 
kinds of changes may be used in decision support - for example an action of treatment should 
be taken if the probability of an increase in SCC is above a critical level. The purpose of this 
presentation is to introduce dynamic linear model and in particular multiprocess class II 
mixture models with the recursive updating procedure for providing probabilities of different 
kinds of changes.  
  
MODEL 
Dynamic linear model. For the time series { }  consisting of n  observations (of e.g. 

ln(somatic cell count)) a dynamic linear model (DLM) is described by an observation equation: 
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where  is the observation matrix, θ  is a latent vector (or scalar) and v , with v N , 

is the observation noise. The latent process { }  is given by the system equation (and 

the initial information) with evolution matrix (system matrix)  and evolution error . It is 
assumed that , with v v  mutually independent and independent 

of the initial information. The model specified by {  will be denoted .  
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Example: The sire model given by , for t ; with  independent of 

 is equivalent to the DLM given by observation equation 

,  system equation  and initial information . Note that 
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Multiprocess class II mixture model. If the observations do not follow the same DLM for all 
values of t , it is useful to introduce mixture models, where, at each time , we may choose 
between  different models. The Multiprocess class II mixture model is defined as follows: 
Let, for some integer , Α=  denote the parameter space forα , and suppose, 

that at each time t , there exist an α ∈Α so that  holds. If the value, α , of α  defining 

the model at time , , is selected with known probability, π α , 

then the series { }  is said to follow a multiprocess class II mixture model. We will use 

 as short notation for . Furthermore we let  denote the information 

available at time , . Here we will assume that  for t . 
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Multiprocess Kalman filter (extended). In the following we outline the recursive updating 
procedure for providing posterior probabilities , of model j at time , as well as 

one and two step back smoothed probabilities,  and , for the 
different models at different time points. The procedure is outlined for a model with , 

 and  for all t . The observation error as well as system error are assumed to 
depend on the model at time , but are otherwise independent of time. Model  is assumed to 

be selected with probability  independently of the past, , 

 (fixed model selection probabilities). A priori it is assumed that θ  
and that all of the parameters are known. For t=1: From the system equation and the prior 
distribution of θ  we obtain θ +  for . This, 

together with the observation equation, gives, conditional on , the forecast distribution 
of Y : 
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Next, the posterior probability of the different models at time 1  are calculated from 
  ( )( ) ( )1P M j D

where  by assumption is equal to π . The posterior distribution of θ  is 

then given by a mixture of θ ,  with mixture 

probabilities ; For time t : The steps in obtaining the (an approximate) 

posterior distribution of θ , as well as one (and two) step back smoothed probabilities of the 
different states/models at time  ( 2t  for ) become more involved. Here we refer to 
Smith and West (1983) or West and Harrison (1997) for further details. 
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EXAMPLE 
In order to illustrate the methodology, data { }  were generated according to the linear 

growth model with exceptions, conditional on , given by observation equation: 

, with  and θ µ ; system equation(s) µ µ  

and  with ,  and 

,  and  assumed to be mutually independent.  
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Figure 1. A Simulated data, B Posterior probabilities of the 4 different models at time 

, C and D One and two step back smoothed probabilities of the 4 different 
models at time  and time , respectively 
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Values of the different parameters are given in Table 1. θ  was arbitrary set to '  and all 
of the data were simulated from Model 1 (steady state) except for a change in level at time 10, 
a change in slope at time 25 and an outlier at time 40. The parameters from Table 1 were used 

0 (4 0
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in the analysis and the initial information was (arbitrary) assumed to be 
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Table 1. Parameters used for analysing simulated data 
 

Model j Name ( )0 jπ  ( )V j  ( )E jµ  ( )E jβ  

1 steady state 0.94 1.0 0.0 0.0 
2 chance in level 0.02 1.0 20.0 0.0 
3 change in slope 0.02 1.0 0.0 10.0 
4 outlier 0.02 50.0 0.0 0.0 

 
The simulated data are shown in Figure 1.A. Posterior probabilities (Figure 1.B) of the outlier 
model are very high at times 10, 25 and 40. I.e. abrupt changes are detected - but not the true 
nature of the changes. The outlier is pointed out (wihtout false positive detections of outliers) 
from one step back smoothed probabilities (Figure 1.C). Finally from two step back smoothed 
probabilites (Figure 1.D) we obtain high probabilities of the models used in the simulation - at 
all timepoints. 
 
CONCLUSION 
We have briefly summarised (with minor modifications) part of the methodology for modelling 
and monitoring biological time series subject to outliers and changes in the underlying latent 
variables presented in Smith and West (1983). They used the method successfully to provide 
on-line probabilities of serious changes in kidney function in individual patients who had 
recently received transplants. The method is relevant in agriculture. We may for example, 
based on regular measurement of ln(somatic cell count), or other indicators of mastitis, provide 
probabilities of mastitis and hopefully be able to detect mastitis earlier and more reliable 
compared to other methods - because of the flexibility in these models. In applications of 
multiprocess II mixture models parameters have been found from empirical trials with the 
system (see e.g. Smith and West (1983) and Thysen (1992)). Methods for assessing the 
adequacy of mixture models are lacking. Increasing the dimension of the observations as well 
as the dimension of the state vector off course increases the complexity in finding suitable 
parameters. Another challenge is to incorporate information from relatives in mixture models 
and/or to integrate with breeding value estimation. 
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