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Introduction 
Genomic Selection (GS), introduced by Meuwissen et al. (2001), allows the use of high 
density marker data to estimate genomic breeding values (GEBVs) on selection candidates 
without phenotypic information. Marker effects are estimated in a reference population (the 
training dataset) containing individuals with both marker genotypes and trait phenotype 
information, and then GEBVs of any genotyped individual (the validation dataset) can be 
calculated using these estimates. Simulation and real data studies have shown that this 
method can predict GEBVs with high accuracy, with lower costs and shorter generation 
intervals than traditional methods, as long as training datasets are sufficiently large. 
Typically the reference population is a single breed population (or single line), and 
individuals in the validation dataset come from the same breed, though possibly from a 
different generation. A large reference population from the validation dataset breed is 
however not always available, and combining breeds in a training dataset may be 
advantageous. On the other hand, the predictive ability of GS relies on markers accounting 
for the effect on the trait of QTLs in linkage disequilibrium (LD) with them, and the 
accuracy of prediction may be reduced because of inconsistent LD across breeds. Simulation 
studies have shown that using a multi-breed reference population can improve the accuracy 
of GEBVs (de Roos et al. 2009, Ibanez-Escriche et al. 2009), especially if breeds are closely 
related or marker density is very high, suggesting that the increase in training dataset size 
more than compensates for the loss of homogeneity. Multi-breed training sets may also allow 
for higher accuracies because the markers selected in the GS model are likely to be in LD 
with a QTL across breeds and hence be more tightly linked to the QTL (de Roos et al. 2009). 
 
Against this background, the objective of this study was to evaluate the predictive ability of 
Genomic Selection across multiple populations in a real dataset of broiler chicken lines. 

Material and methods 
Datasets. SNP genotype, phenotype and pedigree data from ten broiler chicken breeding 
lines from one major global breeding company (Aviagen Ltd.), coded Line 1 to Line 10, 
were used. The lines evaluated were representative of lines used in a commercial broiler 
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breeding program and were closed populations which have undergone multiple generations 
of selection. Selection pressure was different for each line to the extent that considerable 
differences in key traits now exist. A study of previous generations of the same lines 
(Andreescu et al 2007) found that LD in these lines extends over shorter distances than 
reported in other livestock species but was consistent between lines at short distances, with 
correlations of LD measured by r greater than 0.9 for closely related lines. A total of 154 to 
201 individuals from each line that were representative of males used for breeding for 
several consecutive generations were used. Phenotypes were sire progeny means (over 5 to 
836 progeny) adjusted for systematic environmental effects and the estimated breeding value 
of the dam for a body weight trait of moderate heritability. The correlation of sire means with 
BLUP estimated breeding values exceeded 0.95 in each line. Genotype data for 12046 fairly 
equally distributed SNPs were available for each sire. All SNPs were used for analysis, 
although several are fixed in one or more lines but we don’t expect this to affect the analysis. 
Because the number of genotyped individuals per line was limited, lines were pooled to 
create cross-validation datasets. In datasets cv1 to cv10, the training dataset was composed of 
9 lines and the remaining line was used for validation. In datasets cvmix1, cvmix2, cvmix3 
and cvmix4 each line was present in both the training and the validation dataset. Datasets 
cvmix1 and cvmix2, were created by randomly assigning individuals from each line to either 
the training or validation datasets, in a proportion of about 17:1. For datasets cvmix3 and 
cvmix4, individuals were assigned (using a program provided by David Habier) such that the 
relationship between individuals in training versus validation datasets was low. 
 
Statistical analyses. Two related models were used for analysis. 
The first model is:   yij = µi + Σbk*gijk + eij 

where yij is the adjusted progeny mean of sire j from line i, µi is a line-specific mean, bk is the 
effect of marker k, gijk the genotype of sire j in line i at marker k (0,1,2 or two times the allele 
frequency in the line when missing), and eij are residuals distributed N(0,V/nij), where V is 
the residual variance and nij the number of progeny. The second model also included in a 
polygenic term, pij,, assumed distributed N(0, AVp) where A is the relationship matrix based 
on a 3-generation pedigree and Vp is the polygenic variance.  
 
BayesC, a variation of the BayesB method introduced by Meuwissen et al. (2001) was used 
to fit these models. In BayesC, effects for markers included in the model were assumed to 
come from a normal distribution with common variance Va. This method gives results 
similar to BayesB but converges faster. The Gibbs sampler was run for 100,000 iterations of 
which 50,000 were burn-in. Priors for V, Vp, and Va were inverted-Χ2 with parameters 
chosen such that means were 200, 10, and Vg/π2pq, where Vg is 10 and 2pq the average 
value of 2pq over all segregating markers. Other choices for scale parameters did not affect 
results significantly. Small values were chosen for degrees of freedom for both the 
environmental (df=10) and the genetic variance (df=4).  Polygenic effects were sampled 
using the method of Garcia-Cortes and Sorensen (1996). Parameter π was set equal to 0.90. 
Other values of π were also used but did not affect the predictive ability of the model unless 
extremely high. Results of the BayesC analyses were compared with those from three other 
methods: BayesB of Meuwissen et al. (2001) with π=0.90, GBLUP, and BayesCπ. GBLUP is 
BayesC with π = 0. BayesCπ is a variation of BayesC where π is treated as unknown with 



uniform(0,1) prior. Because the latter model converged much slower, 200,000 iterations with 
150,000 burn-in were used.  
 
The GEBVs for individuals in the validation data were computed using estimated marker and 
polygenic effects from models 1 and 2. Predictive ability was computed as the correlation of 
GEBVs with the adjusted progeny mean phenotypes in the validation dataset. 

Results 
The prediction of BVs for a line using a training dataset made up of the other 9 lines 
(datasets cv1 to cv10), resulted in correlations between GEBVs and phenotypes in the 
validation data sets ranging from -0.03 to 0.26 when BayesC was used (Table 1). The other 
three methods resulted in a similar range of correlations, although there were sizeable 
differences between methods for some datasets.  The posterior mean of π from BayesCπ was 
low, ranging from 0.24 to 0.39. The posterior mean was independent of the initial value of π 
but the posterior distribution was very diffuse, suggesting that the accuracy of the BayesCπ 
method may be underestimated due to a lack of convergence. 
 
Table 1: Correlations between GEBVs and progeny means in validation datasets 
separated by line and estimates of the proportion of non-zero SNP effects (π) from 
BayesCπ. 
 

Dataset cv1 cv2 cv3 cv4 cv5 cv6 cv7 cv8 cv9 cv10 
BayesC 0.13 0.05 0.18 0.08 -0.03 0.06 0.00 0.06 0.16 0.20 
BayesB 0.10 0.01 0.17 0.07 0.06 0.12 0.12 0.01 0.25 0.18 
BayesCπ 0.09 0.06 0.14 0.08 0.00 0.07 0.01 0.10 0.10 0.21 
GBLUP 0.09 0.06 0.13 0.08 0.01 0.08 0.00 0.11 0.09 0.21 
π 0.26 0.31 0.39 0.26 0.34 0.35 0.35 0.35 0.29 0.24 

 
Validation correlations were much higher for some datasets than others but this was not 
consistently associated with the degree of relatedness of the validation line to one or more 
lines in the training dataset. However, in datasets cv1 to cv10, the relationship between 
individuals in training and validations datasets was always low because lines were separated 
by at least several generations. When individuals from every line were present in both the 
training and the validation dataset (cvmix 1 to cvmix4), validation correlations were 
substantially greater (Table 2). As expected, this increase was more marked for datasets 
cvmix1 and cvmix2, where validation and training set individuals could be more closely 
related, than for datasets cvmix3 and cvmix4 where these relationships were constrained to 
be less than .5.   
 
Table 2: Correlations between GEBVs and progeny means in mixed validation datasets. 
 

Dataset BayesC BayesB BayesCπ GBLUP 
cvmix1 0.63 0.58 0.65 0.66 
cvmix2 0.61 0.55 0.62 0.62 
cvmix3 0.33 0.41 0.31 0.31 
cvmix4 0.43 0.47 0.45 0.46 



Discussion 

Correlations between GEBVs and progeny means were low when validation individuals 
came from a line that was not represented in the training dataset, although LD at short 
distances was fairly consistent across lines. The considerable differences in selection 
pressure and environments between lines may be partly responsible for the lack of accuracy, 
as well as the limited marker density used in this study. The GEBVs of individuals can be 
predicted with high accuracy when the validation lines were represented in the training 
dataset, even when the number of individuals of the same line in the training dataset was 
low. These results are consistent with studies in cattle (Hayes at al. 2009) that have found 
that using a training dataset of one breed to predict GEBVs of individuals from a different 
breed results in correlations close to 0, but combining breeds in the training dataset increased 
accuracy. The dependence of accuracy of GEBV with level of relatedness of validation and 
training individuals suggests a large proportion of the predictive ability of GS comes from its 
prediction of additive relationships among individuals. This pattern was replicated whether 
we used BayesB, BayesC, or BayesCπ. 

 
Choice of priors had little impact on the accuracy of GEBVs. This was true for both BayesB 
and BayesC. The difference in accuracies between BayesC, BayesB, BayesCπ and GBLUP 
were negligible, although  the accuracy of BayesCπ may be underestimated due to lack of 
convergence.  

Conclusions 
Genomic Selection methods have low accuracy when predicting GEBVs of individuals from 
lines not represented in the training data set. Including even a small number of individuals 
from the validation lines in the training data can increase accuracies appreciably, especially 
when these individuals are highly related to validation individuals. The results are 
independent of the Genomic Selection algorithm used. 
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