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Introduction 
Copy numbers variants (CNVs) are DNA segments ranging from kilobases to several 
megabases in length with a variable number of repeats among individuals (Orozco et al. 
2009). Recent studies at genome scale have revealed that 5% of the human genome is 
affected by CNVs (Zhang et al., 2009). This type of structural variation can influence gene 
expression and has been associated with Mendelian and complex genetic disorders and also 
affects variation in metabolic traits (Orozco et al., 2009). Previous studies in pigs have 
detected CNVs using the Comparative Genomic Hybridization (CGH) technique (Fadista et 
al. 2008; Tang et al. 2010) in arrays designed to cover specific porcine chromosomes.  
 
An alternative method for CNV detection is based on whole genome SNP genotyping arrays 
(Komura et al. 2006; Peiffer et al. 2006; Tuefferd et al. 2008), but has not yet been tested in 
swine species. A high density porcine SNP chip has recently been released by Illumina. This 
tool is a very valuable resource for studies of pig genetic variability and the molecular 
dissection of complex traits of economic importance. The Illumina’s Porcine SNP60 
Beadchip contains probes to genotype 62,621 SNPs covering the whole genome (Ramos et 
al. 2009). The average distance between SNPs is 34.6 kb in autosomes and 59.2 kb in 
chromosome X (on build 7).  
 
The goal of this study was to detect CNVs on autosomal chromosomes in a pedigree from 
Iberian x Landrace cross using the Porcine SNP60 BeadChip data.  

Material and methods 
Animal material. We analyzed a total of 55 individuals (13 males and 42 females) 
belonging to four generations of the IBMAP cross (Perez-Enciso et al. 2000; Clop et al. 
2003). This population was originated by crossing 3 Iberian (Guadyerbas line) boars with 31 
Landrace sows. In this study we analyzed the 3 founder Iberian boards, 24 founder Landrace 
sows, 17 F1, 3 F2, and 8 backcross animals. 
 
Genotyping. The 55 animals were genotyped with the Porcine SNP60 BeadChip (Illumina) 
using the manufacturer recommendations. Raw data were visualized and analyzed with the 
GenomeStudio software (Illumina). 
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Statistical analyses. We analyzed the Porcine SNP60 BeadChip data using three different 
softwares as recommended by (Winchester et al. 2009) to increase confidence in the analysis 
and limit the number of false positives. First, we used the Illumina’s proprietary software 
GenomeStudio to check data quality and the cnvPartition v2.4.4 Analysis Plug-in for CNV 
detection. Then, we exported the signal intensity data of logRratio (LRR) and B allele 
frequency (BAF) to employ the R package for Genome Alteration Detection Algorithm 
(GADA) (Pique-Regi et al. 2008). This algorithm uses sparse Bayesian learning to predict 
CNV changes. Next, we used the PennCNV software that was originally developed for 
Illumina data analysis. This program integrates in a Joint-calling algorithm a Hidden Markov 
Model (HMM) with family relationships and signal intensities for parent-offspring trios 
(Wang et al. 2007). Finally, we compared the results from the three softwares and annoted 
the CNVs detected in at least two animals and recalled by at least two softwares. 

Results and discussion 
The initial number of CNVs called by each software was: cnvPartition (94), GADA (200) 
and PennCNV (51). Figure 1 summarizes the CNVs identified and compares the results 
obtained from the three programs.  
     
Figure 1. Overlapping CNVs events from the three programs. 
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When a more stringent criterion for the selection of CNVs was used, namely, detected in at 
least two animals, and recalled by at least two programs, a total of 40 CNVs located in 15 of 
the 18 analyzed chromosomes passed this filter and showed Mendelian inheritance.  
 
 



The number of CNVs overlapping the PennCNV and GADA programs is higher than 
between cnvPartition and any of the other programs. The percentage of CNV events 
confirmed by software was 70.6 % for PennCNV,  19.5 % for GADA and 24.5 % for 
cnvPartition. Similar results were reported by Winchester et al. (2009) comparing different 
algorithms for CNV detection, suggesting that PennCNV is more accurate in the prediction 
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BeadChip. This may explain the differences in the minimum CNV length between our study 
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showing a higher accuracy for the PennCNV program. A total of 40 CNVs were identified 
ith two algorithms and in at least two animals, showing a Mendelian inheritance pattern. 
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Size for the CNVs detected ranged from 49.5 to 1,450 kb, with a median size of 401.4 kb . 
They contain a total of 55 genes (Table 1): 16 CNVs with one gene and 7 CN
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 16 2 200.997 1 

17 1 103.96 2  
 
 
One of the limitations of the Porcine SNP60 BeadChip for its use in the identification of 
CNVs is the relatively low density of SNPs in comparison to the human 1 M SNP arrays. 
Hence, only the largest CNVs are expected to be assessed with

(49.5 kb) and Fad

Conclusion 

We have assessed the ability of the Porcine SNP60 BeadChip to detect CNVs in an Iberian x 
Landrace cross. Three algorithms were compared (cnvPartition, GADA, and PennCNV) 
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