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Introduction 
For genomic breeding values, the effects of dense genetic markers are first 
estimated in a test population and later used to predict breeding values of 
selection candidates (Meuwissen et al, 2001). Genomic breeding values 
generally have higher accuracy than conventional BLUP breeding values 
(e.g. Goddard, 2009), because the genetic markers provide a more accurate 
relationship matrix than the pedigree based matrix. For example, the 
relationship between two full-sibs is 0.5 when based on pedigree, but markers 
may show that the true relationship is between 0 and 1. 
 
Optimum contribution selection (Meuwissen, 1997, Grundy et al., 1998) is a 
selection method that maximises genetic gain while restricting the rates of 
inbreeding of the progeny by restricting the relationship of the parents. Until 
now, the pedigree based relationship matrix has been used to restrict the rates 
of inbreeding, which constrains the inbreeding at a neutral locus that is not 
linked to any QTL. It may be questioned whether such a locus exists, 
especially since genomic selection results suggest that there is a large number 
of QTL in the genome (Luan et al., 2009). Thus, using genomic relationships 
may yield a more precise control of the genomic inbreeding. 
 
The aim of this study is to compare genetic gain, pedigree and genomic based 
rates of inbreeding when using pedigree based or genomic optimum 
contribution selection (GOCS) and where in both cases selection is for 
genome wide EBVs (GWEBV). GOCS constrained the average genomic 
Identity-by-Descent (IBD), but local rates of inbreeding were also studied. 
The breeding design resembled a sib-test design as commonly used for 
aquaculture species.  
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Material and methods 
Simulation of populations. Briefly, a base population with effective 
population size of 1000 was simulated for 4000 generations. Details are 
described in Sonesson and Meuwissen (2009). The genome consisted of 10 
pairs of chromosomes, each of size 1M. Randomly 100 SNPs were selected 
as QTL, if MAF>.05, and the 100 SNPs with highest MAF were selected as 
markers. QTL-effects were sampled from a gamma-distribution with a shape 
parameter of 0.4 and a scale parameter of 1.66 (Hayes and Goddard, 2001). 
Total genetic variance was standardized to 10. In addition, 100 artificial IBD 
markers were positioned at equal distances at each chromosome. These IBD 
markers were not involved in the selection in any way, but were assigned 
unique founder alleles in generation G0, in order to monitor the increase of 
the genomic IBD at these positions. 100 sires and 100 dams from generation 
4000 were randomly selected to create generation G0, consisting of 3000 or 
6000 selection candidates (Ncand), which were genotyped, and 3000 or 6000 
test-full-sibs (Ntest), which were phenotyped and genotyped. In later 
generations, selection was by GOCS. GWEBV were predicted by BLUP 
(Meuwissen et al., 2001).   
 
Genomic optimum contribution selection. The optimum contribution 
selection algorithm of Meuwissen (1997) was used, ie. genetic level of next 
generation of animals, Gt+1 = ct’GWEBVt, was maximised, where ct is a 
vector of genetic contributions of the selection candidates to generation t+1. 
Rates of inbreeding are restricted by constraining the average coancestry of 
the selection candidates to 2/C 1t ttt cA'c=+ , where  At is a (n x n) 
relationship matrix among the selection candidates, t

d1t )F1(1C Δ−−=+ , and 
ΔFd is the desired rates of inbreeding (Grundy et al., 1998) being 0.005 or 
0.010 per generation. The relationship matrix is here either based on pedigree 
data or on genomic data, in which case it equals XX’ (Goddard, 2009), where 
X is a matrix of marker genotypes (Xij is -2p/√[p(1-p)], 1-2p/√[p(1-p)], or 
2(1-p)/√[p(1-p)] for ‘0 0’, ‘1 0’ or ‘1 1’ gentypes). Parents of candidates (and 
1 or 2 testsibs) were sampled with replacement according to probabilities ct.  



Results and discussion 
Table 1 shows that ΔFd was achieved on the scale it was constrained 
(pedigree or genomic). However, when ΔFped was constrained ΔFgenomic was 3 
times too high.  Furthermore, ΔG was 37-60% higher than when ΔFgenomic 
was constrained. When ΔFped was constrained, ΔG was higher (+~60% when 
ΔFd =0.005 and +37% when ΔFd =0.010), because ΔFgenomic was increased.  
 
Table 1: Genetic gain (ΔG), rate of inbreeding based on pedigree (ΔFped) and on 
genomic IBD (ΔFgenomic)1 relationship matrices at generation G10 when either ΔFped or 
ΔFgenomic was constrained. Results are based on average of 100 replicates. 

Ncand Ntest ΔFd ΔG (se) ΔFped (se) ΔFgenomic (se)

ΔFped constrained
3000 3000 0.005 3.08 (0.035)   0.0050 (0.0001)   0.0151 (0.001)
3000 6000 0.005 3.10 (0.035) 0.0048 (0.0001) 0.0162 (0.001)
3000 6000 0.010 3.31 (0.037) 0.0098 (0.0003) 0.0333 (0.002)

ΔFgenomic constrained
3000 3000 0.005 1.91 (0.033)    0.0041 (0.0001)       0.0051 (0.0002)
3000 6000 0.005 1.95 (0.024) 0.0039 (0.0001) 0.0052 (0.002)
3000 6000 0.010 2.41 (0.028) 0.0071 (0.0002)  0.0100 (0.0004)

 
1ΔFgenome is based on the increase of the IBD as monitored by the IBD markers. 

    
Figure 1 shows that schemes that constrained ΔFped, genomic IBD is 
substantially more variable across the genome, than when ΔFgenomic was 
constrained. It seems that when constraining ΔFped the optimum contribution 
algorithm tries to find ways to increase the frequency of the largest QTL as 
quickly as possible, and uses deficiencies in the pedigree based relationship 
to do so. Furthermore, it seems that constraining ΔFgenomic, results in a quite 
evenly distributed increase of the IBD across the genome, such that putting 
extra IBD constraints in regions with large QTL is not needed, i.e. 
constraining the average genomic IBD across the genome seems to suffice.  
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Figure 1: Variance explained by QTL in generation G0 (pink) and IBD in generation 
G10 when ΔFped (yellow) or ΔFgenomic (blue) was constrained. Results are from one 
replicate with Ncand=3000, Ntest=3000 and ΔFd=0.005. IBD across the genome was 
monitored by the IBD markers. 

Conclusion 
The results show that when genomic methods are used with traits that have 
many QTL contributing to the variance the concept of inbreeding at a neutral 
locus is no longer tenable. Therefore this requires a re-consideration on what 
is an appropriate rate of loss of diversity when directly measured in the 
genome. Previous selection methods could have promoted similar rates of 
loss of diversity on the genomic scale, but the control measures applied were 
on a scale based on pedigree and neutral loci, and resulted in a much more 
variable loss of diversity compared to constraining the ΔFgenomic. 
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