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Introduction

Model selection, or the use of regularization (Yi and Xu (2008)) are often employed in QTL
mapping and GEBV prediction when models are oversaturated. Shrinkage is particularly pop-
ular since the bias introduced by forcing coefficients to 0 is offset by a reduction in mean
square error. Different procedures are common. In the Bayesian-LASSO a double exponen-
tial prior is assigned to SNPs variances (de los Campos et al. (2009)). Alternatively, inverted
χ2 priors can be used (Cleveland et al. (2009)). One common limitation of these approaches
is the utilization of priors with single mean and scale, while shrinkage toward multiple prior
means with unknown scale would be desirable. Methods have been proposed where shrinkage
is performed on a predefined set of groups. These methods though, lack in generality since
they require prior knowledge of the number of groups. Recently, Maclehose and Dunson
(2009) proposed a model that efficiently allows multiple locations shrinkage. In their method
a Dirichlet process prior is placed on the mean and scale parameters, which induces clustering
around a small set of means with different shrinkage. In this case the number of shrinkage
clusters is driven by the data so that no prior assumption on the clusters number is required.
The objective of this investigation was the application of multiple shrinkage models in GWA
and GEBV prediction for direct gestation length (GL) in the US-Holstein and Italian Brown
populations and the comparison of these with other popular models. Differences in gestation
length have been reported among these two cattle breeds. While Holstein averages around 280
d, Brown GL has been reported to be around 10 d longer (Norman (2009)) . Despite longer
GL though, Brown shows lower calving problems than Holsteins.

Material and methods

Sires in the CDDR (US-HOL) and in the Italian Brown (ITA-BW)populations with both EBVs
and genotypes for the 50K ISelect chip were used in the analysis (N = 4743 and N=749,
respectively) GWA and GEBV prediction were performed using five different approaches.
Bayes-A (B-A), Bayesian LASSO (B-L), Student-t (S-T) models:
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All models were considered as two level hierarchical. A flat (1) and a non informative ( 1
σ2
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prior were assigned to µ and σ2
e , respectively. The remaining prior structure was: βj ∼

N(0, σ2
gj) for the jth SNP, σ2

gj ∼ Exp(σ2
gj |2

/
λ2
j ) for the B-L approach and σ2

gj ∼ Inv −
χ2(σ2

gj |v, s2) for the B-A and S-T approaches. Degrees of freedom ν and scale parameter s2

for B-A were considered hyper-parameters and were assigned values as in Meuwissen (2001).
The S-T model treated ν and s2 as unknown and assigned a uniform density of 1

ν for the
interval (0,1] and a uniform distribution of s for the range (0, A], withA being a large number.
The λ parameter in the B-L approach was assigned a gamma prior distribution Gamma(a, b).
Values of a and b were set at 0.05 and respectively 1 so that the prior for λ was essentially
uniform over a wide range of values. A Gibbs sampling algorithm was implemented to obtain
samples from the joint posterior distribution.
Multiple shrinkage with B-LASSO (MS-B-L) or student-t (MS-S-T)specifications:
All previous models performed a single shrinkage for all markers considered. In MS models
shrinkage to multiple non-null values was allowed. This was obtained expanding either B-L
or S-T models specifications by including a mixture prior with separate prior location, scale
(and d.f. for S-T) for each coefficient. To reduce the dimensionality of the model a Dirichlet
process prior was employed allowing grouping of markers in a smaller subset of clusters.
Following are the prior structure and sampling scheme for the MS-B-L model. Differences
with the MS-S-T are similar to what outlined previously and are omitted.
µ, σ2

gj , bj , and σ2
e priors were as in previous section. The remaining prior structure was:

σ2
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1 πδ(kj |t), πt = Vt
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∗
t ) ∼

{
δ(µ∗t |0)Gamma(λ∗t |a0, b0) if t = 1
δ(µ∗t |c, d)Gamma(λ∗t |a1, b1) if t > 1

Where δ(µ∗t |0)indicates a degenerate distribution with mass at 0 πt is the probability that a
coefficient will fall in a cluster of markers with (µ∗t , λ

∗
t ) and is constructed through a stick-

breaking process. α is a hyper-parameter that govern the clustering of markers,kj indexes
which of the bins the jth coefficient falls into, and t represents the number of clusters at a
certain iteration with * indicating p*(number of clusters)< p(number of markers). a0, b0, a1,
b1 ,c, d are hyper-parameters set (upon simulation) at 1, 30, 30, 6.5, 6.5, 0, and 4 respectively.

In addition to the general Gibbs sampling scheme for the previous models extra steps were
included in the MS implementation:
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• Update cluster configuration through metropolis step Papaspiliopoulos and Roberts (2008)

The Gibbs sampling algorithms for all methods were implemented in R . For each analysis a
single chain of 150,000 iterations was run with a burn-in period of 20,000 iterations. Samples



were stored every 30 iterations. Convergence of each chain was assessed both by visual in-
spection of the trace and the use of estimates of effective sample size for variances obtained
through the coda package. Inferences on the parameters were made on the average of the
posterior samples after burn-in.
GWA step: At each iteration, an approximate LOD (B-LOD) score was calculated for each
marker as 2log10

L(FM)
L(RM) where L(FM) and L(RM) are the posterior likelihoods of full and

reduced models, respectively. Significances were obtained from the median of the each SNP
B-LOD scores. For this step all sires were retained.
GEBV step: For genomic predictions sires were split in training and a prediction datasets as in
VanRaden (2008) for US-HOL and similarly for ITA-BW. GEBVs in the prediction set were
calculated from SNP solutions obtained from the training set (38410 and 35622 SNPs for US-
HOL and ITA-BW respectively). GEBVs were then compared to EBVs in the prediction set
to evaluate performaces of the different models.

Results and discussion

GWA: GWA Results for the most significant SNPs in either population are reported in Table 1.
B-LOD scores and estimated effects and, within parentheses, the method yielding the highest
score and the heritability for the SNP are reported. The most significant SNP for direct GL in
the US-HOL population is on BTA18. B-LOD score for the SNP is 13.4. The same SNP was
identified by Cole et al. (2009) as affecting calving ease and stillbirth. The significance of this
marker, was not confirmed in the Brown population. Two significant markers were identified
on BTA28 in both US-HOL and ITA-BW in proximity of the Tubulin folding cofactor E gene,
whose mechanism of action relates to post-embryonic development. Significant SNPs for the
US-HOL were also found on BTAs 15 and 4 where QTL for gestation length were previously
mapped in different populations. In both population MS models produced the highest signal
with MS-S-T higher in US-HOL and MS-B-L in ITA-BW, respectively

Table 1: SNPs for direct GL in US-HOL and ITA-BW populations linea

B-LOD (Method) Effect(h2)
Chr Pos US-HOL ITA-BW US-HOL ITA-BW
28 6656203 4.6(d) 0.17(.01)
28 45455730 12.1(e) 0.43(.04)
25 940039 4.4(d) 4.6 (e) 0.15(.01) 0.11(.008)
24 55438536 6.2(e) 0.67(.05)
18 57125868 13.4(d) 0.71(.04)
15 61154802 4.3(d) 0.21(.008)
6 4948746 14.1(e) 0.91(.05)
4 104396726 4.3(d) 0.11(.02)

aMethods: a B-A, b S-T, c B-L, d MS-S-T, e MS-B-L.
Effects are expressed as |days|

GEBV prediction: Correlations between GEBV and EBV in the prediction dataset for the



different models investigated are presented in Table 2. All models performed similarly with
Bayes-A ranking the worst and MS models ranking the best. A slight advantage of MS meth-
ods vs. their respective single shrinkage counterparts was offset by larger models and higher
computation time. MS-S-T outperformed MS-B-L by a narrow margin in US-HOL while
MS-B-L performed better in ITA-BW.

Table 2: Correlation between EBV and GEBV in the prediction datasets for all models

US-HOL ITA-BW
B-A 0.55 0.37
B-L 0.58 0.39
S-T 0.60 0.37
MS-B-L 0.59 0.39
MS-S-T 0.61 0.39

Conclusion

Several significant SNPs were discovered in the two populations investigated. Marginal over-
lapping suggests that multiple mutations might regulate the length of gestation in the two
breeds. Multiple shrinkage methods can represent a viable alternative in both GWA studies
and two stages GEBV prediction. This at the cost of larger models and at least presently of
higher computation costs.
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