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ABSTRACT: Here we describe the application of 
genomic selection in both layer and broiler breeder 
populations. A brown egg layer line was partitioned 
into two sub-lines, one used for genomic selection 
and the other as a control representing pedigree based 
selection. Generation interval in the genomic sub-line 
was halved and the sub-line size was reduced 
compared to the traditionally-selected control. The 
genomic sub-line outperformed pedigree-selected 
contemporaries in 12 of 16 traits evaluated, and 
genomic estimated breeding values were more 
accurate and persistent than pedigree-based estimates. 
Genome wide association studies for all available 
traits identified several regions associated with 
economically important traits.  Similar improvements 
in prediction accuracy were observed in broilers. 
Estimation of the Mendelian sampling term for full 
sibs without own phenotypic information contributed 
to this gain. The development of robust imputation 
methods enabled the implementation of genomic 
selection into the routine evaluations to accelerate 
genetic progress. 
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Introduction 

The development of tools for genome analysis (Hillier 
et al. (2004); Groenen et al. (2009); Groenen et al. 
(2011); Kranis et al. (2013)) has given poultry 
breeders access to genomics. This genomic 
information can be used to improve efficiency of 
selection by providing more accurate assessment of 
naturally occurring genetic variation between 
individuals and associating it with traits of economic 
interest. Early attempts at marker assisted selection 
(MAS) started in the 1960s when blood groups 
(Brilles (1950)) and their association with immune 
related traits (Hansen et al. (1967)) were discovered. 
Further discoveries of genetic markers such as 
Restriction Fragment Length Polymorphisms and 
Microsatellites provided the means to construct 
genetic maps and begin studies on localizing genomic 

regions associated with various traits. Initial 
excitement from these studies was somewhat reduced 
by the fact that the regions showing significant 
associations were very large, up to whole 
chromosomes, and thus included thousands of genes 
which could be involved in determining the traits of 
interest, with no tool to allow easy interpretation of 
the genomic information. The disappointing early 
MAS results were likely due to limited availability of 
markers, hence low genotyping resolution, and high 
genotyping costs, which limited the size of discovery 
populations. These studies were performed on crosses 
of animals with extreme differences in phenotypes for 
the traits of interest to maximize the chance of finding 
significant regions. Markers significant in these 
crosses were often already fixed by selection in 
commercial lines.  

A new opportunity arose when in 2004 the 
chicken became the first livestock species sequenced 
(Hillier et al. (2004)). Sequencing revealed millions 
of single nucleotide polymorphisms (SNPs), which 
covered all major chromosomes. Sequence enabled 
development of SNP panels, which made high 
throughput genotyping of tens or hundreds of 
thousands markers possible (Avendaño et al. (2010); 
Groenen et al. (2011); and Kranis et al. (2013)). The 
cost of determining a genotype at a single locus 
dropped from about $1.50 in 2010 for a microsatellite 
marker to less than $0.0005 per SNP on a high 
density SNP chip (Fulton, pers. com.).  

 In parallel to advances in genotyping 
technology, statistical and computational methods 
were developed to capitalize on continuously 
increasing amounts of data. Meuwissen et al. (2001) 
proposed that, instead of localizing QTL regions, 
information from the whole genome should be used to 
estimate breeding values. Subsequently, several 
genomic prediction models were developed (see 
review by Gianola (2013)) and applied to simulated 
and real data (Habier et al. (2011)). Based on 
simulation studies, genomic selection in poultry was 
shown to have the potential to provide increased 



accuracy of selection, reduced generation intervals 
and better control of inbreeding (Dekkers et al. 
(2010)). Experiences with real data brought genomics 
in the poultry industry from being an ‘utopic 
objective’ to envisaging deliverables (Avendaño et al. 
(2010)) and further into consolidation stages 
(Avendaño et al. (2012)). Currently, thanks to the 
short generation interval, the chicken is the only 
livestock species for which information on multiple 
generations of genomic selection is available. In this 
paper we share experiences from a multigenerational 
genomic selection experiment performed by Hy-Line 
International and Iowa State University, as well as 
details of implementation of genomic selection in 
both layer and broiler industries. 

Lessons learned from a multi-generation genomic 
selection experiment 

In order to quantify gains from genomic 
selection, a brown egg layer line was split into a 
pedigree control and a genomic sub-line, with parallel 
selection programs. The size of the pedigree sub-line 
was reduced compared to the original line (down to 
60 males selected from 1,000 candidates and 360 
females selected from 2,000 female candidates) but 
continued with traditional pedigree-based BLUP 
selection for an index of 16 traits (reflecting egg 
production and quality), in 13 month cycles, and a 
nested mating structure. The genomic sub-line size 
was reduced to 50 males and 50 females selected 
from totals of 300 male and 300 female candidates to 
reduce costs of genotyping, but without increasing the 
expected rate of inbreeding per year. The generation 
interval was reduced to 7 months, the mating structure 
was changed to allow each female to produce progeny 
with 10 different males (i.e. cross classified mating), 
and selection was based on the same index as in the 
pedigree sub-line but included genomic information 
in breeding value estimation. The training data for 
genomic selection consisted of 5 prior generations of 
all selected individuals in the original line. 
Substitution effects of SNPs were re-estimated every 
generation as new phenotypes on genotyped 
individuals became available. 

Substantial variability in accuracy between 
generations was observed. Models that showed 
highest validation accuracy in the previous generation 
were chosen to derive genomic EBV for selection in 
the current generation. Different models for breeding 
value estimation were tested (including GBLUP, 
BayesB, BayesCPi and their modifications) but no 
single method consistently showed an advantage over 
other methods (Figure 1). However for egg weight 
traits, which were affected by a large QTL, Bayesian 
variable selection models tended to outperform 

GBLUP, whereas for other traits GBLUP had similar 
or in some validation sets higher accuracy. An 
advantage of the GBLUP model was observed in 
terms of the range of models that can be utilized, 
including random regression models for egg 
production (Wolc et al. (2013b)), which are not 
available in current software for Bayesian analysis. 
All models using genomic information tended to have 
higher accuracy than pedigree based models (Wolc et 
al. (2011a)). For the BayesB model, it was observed 
that increasing the proportion of markers fitted in the 
model did not negatively affect accuracy of 
predictions, but fitting too few markers sometimes 
did. For some traits, reducing the weight on, or even 
removing information from distantly related 
individuals, increased accuracy (Wolc et al. (2013)). 
A study on Marek’s disease resistance (Wolc et al. 
(2013a)) showed that proper weighting of phenotypes 
is essential for accurate breeding value estimation, 
and that at least for that trait, removing markers from 
regions of the genome that do not show association 
with the trait may increase accuracy. 

 

Figure 1. Validation accuracies of EBV obtained 
from pedigree (PED), GBLUP, BayesB, and 
BayesCPi methods for 5 traits: sexual maturity 
(SM), weight of first 3 eggs (E3), albumen height 
(AH), shell color (CO), and yolk weight (YW). 

Persistency of accuracy over generations 
without retraining was higher for genomic EBV than 
for pedigree-based EBV, which suggests that genomic 
EBV captured linkage disequilibrium with QTL, in 
addition to relationships (Wolc et al. (2011b)). 
However, there was a substantial drop in accuracy 
from prediction of progeny to grand progeny of the 
last training generation, which led to the conclusion 
that phenotyping cannot be discontinued and constant 
retraining will be necessary to maintain accuracy of 
selection. 



In the experiment, all genotyping was 
performed using a proprietary EW Group 42K 
Illumina SNP panel (Avendaño et al. (2010)). On a 
commercial scale, high-density genotyping all 
selection candidates would be economically 
inefficient, thus several scenarios using reduced SNP 
panels were evaluated. It was found that if both 
parents were high-density genotyped, correlations 
above 0.97 between true and imputed genotypes 
could be achieved when the low density panel 
contained as few as 400 of the 42,000 high-density 
SNPs but correlations dropped below 0.95 when the 
females in the pedigree were only low-density 
genotyped (Wolc et al. (2011c)).    
Genome wide association studies (GWAS) were 
performed for all traits in the selection index (Wolc et 
al. (2012); Wolc et al. (2014)) and for feed efficiency 
(Wolc et al. (2013c)) and Marek’s disease resistance 
(Wolc et al. (2013a)). Chromosomes 1, 2 and 4 were 
found to have the largest numbers of regions 
associated with the analyzed traits. Except for a large 
QTL on chromosome 4, which was associated with 
multiple traits related to egg weight, other traits 
showed polygenic models of inheritance. Some 
consistently significant regions were found for 
measures of egg quality at different ages (Wolc et al. 
(2014)).  

In the final generation of the genomic 
selection experiment (3rd generation of pedigree sub-
line, 5th generation of genomic sub-line), the two sub-
lines were hatched together and raised in the same 
barn. For 12 out of 16 traits, the genomic sub-line 
significantly outperformed the pedigree sub-line, 
however for some of the lower heritability traits 
(h2<0.3) accurate estimation of genomic breeding 
values remained problematic. Greater genetic 
progress in the genomic selection sub-line originated 
from shorter generation intervals and greater accuracy 
of selection of males (Wolc et al. (2011a)). 

Implementation of genomic selection in layers 

Based on the promising results from the 
selection experiment, genomic selection was 
implemented in commercial lines of layers using a 
newly developed 600K SNP chip (Kranis et al. 
(2013)) and custom designed low- and moderate-
density SNP sets.  With as few as 1,000 high quality 
SNPs and strategic high-density genotyping, a high 
accuracy of imputation using pedigree-based methods 
could be achieved. Genomic selection models have 
shown improvements in accuracy over pedigree-based 
analysis, but they don’t solve the problems of low 
accuracy for traits with low heritability and limited 
number of records.  The first genomic selected birds 
will generate descendants that will enter the market as 
commercial birds in 2015. 

 

Experience with genomic selection in broilers 

History 

Very soon after the release of the draft 
chicken genome sequence (Hillier et al. (2004)), 
Aviagen started developing its first SNP panel. 
Thanks to the rapid technological advances, the chip 
density increased from 6K (Andreescu et al. (2007)), 
to 12K (Powel et al. (2011)), 42K (Wang et al. 
(2013)) and ultimately to 600K SNPs (Kranis et al. 
(2013)). Similarly, the number of available genotypes 
for analysis has increased from two hundred 
individuals per line at the initial phase of the project 
to more than fifty thousand birds accumulated since 
2012, when routine implementation started in 
Aviagen. 

Methodology 

The increasing numbers of genotyped 
animals and markers per sample had a profound effect 
on the methods applied for utilizing genomic 
information in breeding programs. Originally the 
objective was to identify major QTL, capitalizing on 
historical LD detected from a GWAS, and then to 
implement a marker-assisted selection scheme. 
However, it proved difficult to detect and validate 
QTL explaining a large proportion of genetic variance 
for the main quantitative traits of economic 
importance for broiler breeding. As the idea of fitting 
all markers simultaneously to estimate genomic 
breeding values (GEBVs) was gaining traction, the 
research was directed to the development of a 
sustainable and cost efficient strategy to implement 
genomic selection for routine evaluations. 

Imputation 

The main challenge was the prohibitive cost 
of large-scale genotyping due to the large number of 
selection candidates and, despite a reduction in the 
cost per SNP, the overall price per selection candidate 
genotyped was relative stable since the density was 
increasing. The development of low-density and 
imputation strategies for genomic selection offered a 
viable solution to the problem, where most animals 
are genotyped with a sparse panel comprised of 
equally spaced markers (Habier et al. (2009)). To 
implement this approach, a robust imputation 
algorithm was required. Both a peeling algorithm 
employing a Gibbs sampler (Wang et al (2013)) and a 
heuristic approach implemented in the software 
program AlphaImpute (Hickey et al. (2012)) were 
investigated. In both cases the accuracy of imputation, 



measured as the correlation between imputed and real 
high-density genotype, was around 0.97. 
AlphaImpute was also extended to accommodate the 
sex chromosome (Hickey et al. (2013)). Systematic 
monitoring (Figure 2), shows that large-scale 
imputation is feasible and robust, enabling the 
implementation of genomic selection for routine 
evaluations in elite broiler lines, without 
compromising the accuracy of GEBVs (Wang et al. 
(2013)).  

 

Figure 2. Density plot of the imputation accuracy 
measured as the correlation between true and 
imputed genotypes. 

Accuracy 

One of the main promises of incorporating 
genomic information is the improved prediction 
accuracy for traits for which phenotypes are not 
available for candidate animals. For such traits, in a 
univariate analysis, estimation of the Mendelian 
sampling term is impossible with pedigree-based 
BLUP and thus, the same EBV is assigned to full-
sibs. Unless information is available on strongly 
correlated traits for these individuals, the ability to 
distinguish between full-sibs is impaired. However, 
with genomics, it is feasible to accurately estimate 
Mendelian sampling terms without necessarily 
requiring a multivariate model. This is illustrated in 
Figure 3, where parental averages from conventional 
BLUP are plotted against GEBVs from a ridge 
regression for a group of 411 individuals, which for 
the purposes of the analysis were assumed not to have 
phenotypes on body weight. Two families are 
highlighted in the graph. For the first one on the left 
side of the chart, all individuals were ranked as below 
average and hence, most likely none of them would 

be selected. Nevertheless, if the GEBVs are 
considered (red upper triangles in the graph), some of 
these full-sibs may now have qualified for selection, 
as they rank high. The opposite applies for the second 
family (depicted on the right side of the graph) for 
which, although the parental average is very high, 
some of the individuals rank quite low for GEBVs. 
As all of these 411 testing individuals had at least 25 
offspring with body weight, it was possible to 
estimate adjusted progeny means, equivalent to de-
regressed EBVs used in dairy breeding (depicted as 
green hexagons in the plot). The fact that these also 
exhibit the same variability is evidence that the spread 
of GEBVs was not an artifact and does estimate the 
Mendelian sampling term.  

Figure 3. Relationship between breeding values 
accounting for the Mendelian sampling term (red 
triangles: GEBVs, green hexagons: adjusted 
progeny means) and parental average (PA) from a 
pedigree-based BLUP. Two families are shown 
(one with low PA on the left and one with high PA 
on the right). All sibs have the same PA, however 
there is significant variation in GEBVs, suggesting 
some sibs rank highly in the cohort. This 
observation was validated using adjusted progeny 
means for the full sibs of the two families. 

Further illustration of the relative advantage 
in prediction accuracy of genomic selection over a 
traditional pedigree-based approach is shown in 
Figure 4. The comparison included pedigree-based 
estimates from multivariate BLUP and univariate 
GEBVs. The relative improvement from 
implementation of genomic selection in terms of 
selection accuracy, measured as the correlation 
between phenotype adjusted for fixed effects and 
pedigree/genomic EBV at the point of selection, when 
animals had no phenotypic records, range between 
20% and 70% (Figure 4). 



 

Figure 4. Relative improvement in prediction 
accuracy of genomic selection (GS) over pedigree-
based (Ped) EBVs, measured as the correlation of 
EBVs with adjusted phenotype for 5 traits: 
fertility % (FERT), laying mortality (MORT), 
hen-housed egg production (HHP), hatchability % 
(HOF) and feed intake (FI).  

With the fast accumulation of genotypes in a 
commercial breeding program, we already have 
entered the “big data” territory and thus, more 
sophisticated tools are required to cope with the high 
dimensionality of the predictions. One of the factors 
that increases computational requirements is the 
number of markers considered in the analysis. As 
very dense SNP panels and soon sequence data will 
become widely available, it appears that there is a 
trade-off in marginal gains in accuracy as a function 
of number of predictors and SNP densities beyond 
100K seem to offer no additional benefits for 
accuracy within the same population, at least with the 
current methods (Abdollahi-Arpanahi et al. (2014)).  

While for quantitative traits that have been 
selected over many generations the whole genome 
approach appears the best strategy, breeding 
objectives are enriched with more traits (Neeteson-
van Nieuwenhoven et al. (2013)) that may have 
different genetic architecture. As the quality of the 
sequence assembly and annotation status improves, 
strategies capitalising on this prior biological 
knowledge may further improve prediction accuracy 
(Morota et al. (2014)).  

Outlook 

We have been able to successfully 
implement, and show a significant advantage for 
genomic selection in broiler selections using 
imputation from low and medium density SNP chips. 
However, reducing the cost of genotyping remains a 
constant challenge. Genotyping by sequencing (G-by-
S) offers the potential to exploit the dramatic 

reduction in sequencing costs, as it uses low density 
sequence coverage to identify SNPs in selection 
candidates. The SNP data are then used for two 
benefits, firstly as a low cost genotyping method to 
enable imputation; and secondly to identify rare 
polymorphisms/QTN from large scale GWAS, which 
have the potential to improve training and therefore 
the accuracy of genomic evaluation. The utility for G-
by-S in broiler breeding remains unproven; however 
there is significant excitement for this methodology in 
the plant breeding world to warrant further 
evaluation.  

Since genomic selection is now part of 
routine evaluations for broilers, a natural progression 
is to expand into other species. Recent advances in 
the sequencing of turkeys (Dalloui (2010)) offer the 
necessary foundation to implement genomic selection 
to achieve faster genetic progress for turkeys. 
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