
 
Proceedings, 10th World Congress of Genetics Applied to Livestock Production 

 
Comparison of Breeding Values from Single-Step and Bivariate Blending Methods 

 
M. Taskinen1, E.A. Mäntysaari1, G.P. Aamand2, and I. Strandén1. 

1MTT Agrifood Research Finland, 2NAV Nordic Cattle Genetic Evaluation 
!
 
ABSTRACT: Breeding values in genetic evaluation are 
compared between conventional animal model BLUP, 
single-step BLUP, and revised bivariate blending after 
genomic BLUP.  The data are extracted from the production 
trait evaluation of Nordic Red dairy cattle. Genotyped bulls 
with daughters are used as training animals, and younger 
genotyped bulls and producing cows as candidate animals. 
Breeding values estimated with the bivariate blending 
method are shown to match the single-step values. Compu-
tationally bivariate blending method is, however, lighter 
than the single-step method and, thus, can be used also with 
larger population sizes. 
Keywords: genomic evaluation; breeding values; single-
step genomic evaluation 
 
 

Introduction 
 

The genomic breeding values can be calculated us-
ing mixed model equations (MME) with genomic relation-
ship matrix (! ) or with many other approach such as 
BayesA or BayesB (Meuwissen et al. (2001)). The basic 
genomic BLUP (GBLUP) breeding values are easily com-
puted if 𝐆-1 can be formed (Strandén and Garrick (2009)). 
Here matrix 𝐆 has a size of number of genotyped animals. 

 
Commonly genomic information is further com-

bined with the conventional breeding values estimation. 
This can be achieved by single-step BLUP (ssGBLUP by 
Aguilar et al. (2010); Christensen and Lund (2010)), simple 
selection index (VanRaden (2008)) or by bivariate blending 
(Mäntysaari and Strandén (2010)). ssGBLUP combines the 
genomic and traditional information sources in a unified 
linear mixed effects model setup. Use of ssGBLUP can be 
prohibitive if the number of genotyped animals is large 
because the method requires two dense inverted matrices of 
size number of genotyped animals.  

 
Nordic genomic evaluations use bivariate blending 

to combine direct genomic value (DGV) and traditionally 
estimated breeding values (EBV). Bivariate blending at-
tempts to mix the two pre-computed information sources 
but at the same time avoiding of any possible double count-
ing of information. Bivariate blending is based on a bivari-
ate model having information from the two sources as two 
correlated traits, phenotypic “trait in interest” (EBV) and 
the estimated DGV. The DGV is considered to have 100% 
accuracy and a correlation of ! !"#

!  with the EBV-trait. 
One of the main advances of bivariate blending over 
ssGBLUP is that it avoids need to include two dense matri-

ces of size number of genotyped animals in the mixed mod-
el equations.  In Taskinen et al. (2013) a revised bivariate 
blending method was introduced and used in model reliabil-
ity comparison. 

 
In this study our aim was to further apply the re-

vised bivariate blending method to breeding value estima-
tion and to compare the breeding values of three methods: 
animal model BLUP (AM-BLUP), single-step BLUP 
(ssGBLUP), and bivariate blending after GBLUP 
(bbGBLUP).   
 

Materials and Methods 
 

Estimation of breeding values. Consider the 
model 

 
𝐲 = 𝐗𝐛 + 𝐙𝐮 ! 𝐞 

 
where 𝐲 is vector of observations, !  is vector of fixed ef-
fects, 𝐗 is design matrix, !  is vector of random effects, Z is 
incidence matrix, and 𝐞is random residual vector. Assume 
Var ! = !𝐕!  and Var ! = !𝐑. The MME are 
 

𝐗! ! ! ! ! ! ! ! ! ! !
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! !
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In AM-BLUP 
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and in ssGBLUP 
 

! !
! ! ! !
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! !
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! !
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where 𝐀  is the pedigree based relationship matrix, !  is 
genomic relationship matrix, 𝐀!!  contains pedigree based 
relationships of genotyped animals, and 𝜎!!  is the genetic 
variance. Let the residual covariance matrix R be diagonal 
with j th diagonal element !! !

! ! ! !  where ! !
!  is the residual 

variance, and ! !  is weight for the observation 𝑗. 
 

Genomic evaluations.  In the standard methodol-
ogy for DGVs (VanRaden (2008)) the MME includes only 
animals with genotypes and, following the notation in [1] 
and [2b], the matrices A and A22 are the same. The right 
hand side in [1] are either deregressed measures of produc-



tion or summarized phenotypic records, e.g.. daughter yield 
deviations.  While the weights wj in original EBV or 
ssGBLUP estimation relate to observations, in MME for 
DGV, the weights attempt to account the total information 
included in phenotypes.  Alternative form for ssGBLUP can 
be obtained if equations of all non-genotyped animals in [1] 
are absorbed into equations of genotyped animals.  After 
the absorb Z’R-1Z  and Z’R-1y terms are written as Z’MZ  
and Z’My, with matrix M as described in text books (e.g. 
Searle (1966)).  In bbGBLUP we approximate the matrix M 
with a reduced diagonal matrix Rbb having the information 
in weights wbb which gives exactly the same u as originally 
obtained by combining [1] and [2a] for genotyped animals. 
Now, if the same weights wbb are used for standard DGV 
estimation, the resulting DGV should approximate the 
ssGBLUP well. 

 
Our approach to derive the wbb follows closely the 

methodology to approximate the EBV reliabilities from 
animal model. There the principle is to find arbitrary diago-
nal R’ such that (! ! ! ! !

!

! !
! ! ! ! !!!  has the same diagonals 

as the inverse of original MME [1]. The reversed reliability 
approximation is based on the original EBV reliabilities of 
genotyped animals. By iteratively applying any method 
(e.g. Tier and Meyer (2004)) for animal model reliability 
approximation, the wbb are solved such that they retain the 
original reliabilities. For this study we used the method of 
Harris and Johnson (1998).  

 
The wbb are considered as effective record contri-

butions (ERC) and can thereafter be used in deregression of 
the EBVs of the genotyped animals.  This yields into an 
approximation of Z’My of MME of the absorbed ssGBLUP 
for the genotyped animals. 
 

Bivariate Blending. The revised bivariate blend-
ing method is performed in five steps. 

 
Step 1: Get reliabilities 𝑟!"#!   from AM-BLUP and 

calculate ERCs for genotyped animals from the reliabilities 
and the pedigree using the procedure described above. 

 
Step 2: Calculate deregressed proofs of the AM-

BLUP EBVs for genotyped animals with AM-BLUP EBVs 
as observations and ERCs of Step 1 as weights. 

 
Step 3: Calculate DGV and reliabilities ! !"#

!  from 
genomic evaluation with DRPs of Step 2 as observations 
and ERCs of  Step 1 as weights. 

 
Step 4: Calculate reliability increase due to geno-

type information. The relative increase in model accuracy 
from AM-BLUP due to GBLUP for genotyped animals can 
be estimated as 
 

𝜈! = !
!"# !

𝜆
= !

! !"#
!

! ! !!"#
! !! !

! !"#
!

! ! !!"#
! !

!

where possible negative values are replaced by zeros. 
Hence, according to simple selection index principles the 
accuracy of the added value due to DGV is 

  !! ! !
! !

! ! ! !!
! 

 
Step 5: Setup bivariate blending model by a single 

trait random regression AM-BLUP 
 

𝐲 ! !" ! ! ! ! ! ! ! ! ! ! ! !  
 

where the observations of “trait” and the DGVs are obser-
vations of the same dependent variable. In our case, the 
observations of “trait” are deregressed proofs (DRP) as in 
AM-BLUP and the DGV are from GBLUP which were 
calculated with approximate bbGBLUP weights wbb. Values 
in the design matrices 𝐊 and used weights depend on the 
type of the observation. When the observation is the origi-
nal DRP as in AM-BLUP, the regression covariables are 
 

𝑘!!!!!! ! ! !! !!!!! !  
 

and the weight is the same as in AM-BLUP, i.e., ERC. 
When the observation is DGV from GBLUP, the regression 
covariables for animal i are 
 

𝑘!      !𝑘! ! ! ! !!
! !!!!   ! ! ! ! !!

! !!!!!  

 
where  𝑟! !!

!  is the increase in squared accuracy due to ge-
nomic information from Step 4, and the weight is a large 
value (e.g. 1,000). The variances are  !"# ! ! ! ! ! !

! ! ! ! !
! ! !  where 𝜎!

!  is from AM-BLUP. After solving ! ! and 𝐮!  
bivariate blending DGVs (!"# !! ) are calculated as linear 
combination 
 

𝐷𝐺𝑉!! ! ! !! !! ! ! ! ! ! !!! !! !  
 
where  !!  values of non-genotyped animals are set to large 
value, for example, 0.95. 

 
Data. Study data were extracted from the produc-

tion trait evaluation of Nordic Red dairy cattle. We assumed 
heritability ! !  = 0.50. After edits, 38,194 SNPs were used 
from the BovineSNP50 chip. 

 
Group of 1,055 genotyped bulls born 2001-2005 

were used as training animals (Training bulls). Daughters 
(with records) for the training bulls were searched and from 
them, 40 daughters were sampled for 522 “top” bulls, and 
10 daughters for 533 “average” bulls, giving up to 26060 
daughters. The “top” bulls were those having more than 
average number of daughters originally. Group of 1,223 
genotyped cows with records (Candidate cows) and group 
of 607 genotyped bulls (Candidate bulls), both born 2006-
2011, were used as candidate animals. 

 



Results and Discussion 
 

Breeding value comparison. The three methods 
(AM-BLUP, ssGBLUP, and bbGBLUP) were implemented 
and breeding values were estimated for the three animal 
groups (Training bulls, Candidate cows, and Candidate 
bulls). 

 
In Figure 1 the correlations of the estimated breed-

ing values of AM-BLUP and ssGBLUP are visualized as a 
scatter plot.  
 

 
Figure 1: Animal model EBVs (AM-BLUP) plotted 
against single-step  genomic evaluations (ssGBLUP)  
 

Each mark in the figure represents individual EBV 
from ssGBLUP plotted against AM-BLUP. Training bulls 
are marked with green circles, Candidate cows blue pluses, 
and Candidate bulls red crosses. The figure illustrates how 
breeding value estimates of the training bulls are on average 
lower than the EBVs or GEBVs of the candidate bulls. The 
correlation between the EBVs and GEBVs is highest on 
training bulls and lowest in cows, which as plotted here, 
have both the genotypes and own records.  
 

Next, the ssGBLUP and bbGBLUP are compared 
in Figure 2. 

 
Figure 2: The bivariate blending GEBVs (bbGBLUP) 
displayed against ssGBLUP GEBVs  
 

 
Correlation between the two EBV is now high in 

training bulls and candidate bulls.  This is also expected 
because the bivariate blending is done using DGV estimates 
based on DRPs derived using ERCs from the reversed reli-
ability approximation.  Thus, the DGV are supposed to 
resemble closely the ssGBLUP results. On average the 
bbGBLUP were lower than the ssGBLUP. Differences were 
larger in training bulls.  However, for the use of evaluations 
this has no effect.  

 
In our study we estimated the DGVs to be used in 

the bivariate blending using genomic evaluations with G-1 
matrix. This, however, is not possible if the population of 
genotyped animals is much larger than the number of genet-
ic markers genotyped. The DGVs can be well estimated 
with SNP based models (Strandén and Garrick (2009)), or 
even Bayesian variable selection models. The only prereq-
uisite is the system to compute the reliabilities of DGV. In a 
case of SNP models, some sensitivity analyses are recom-
mended to test how critical the accuracy of the reliability 
estimates is.   
 

Conclusion 
 
Breeding values of three models were compared 

with Nordic Red dairy cattle data. The estimated breeding 
values of the revised bivariate blending method matched the 
single-step breeding values relatively well. Thus, computa-
tionally bbGBLUP was lighter than ssGBLUP in breeding 
value estimation due to better sparsity. Furthermore, 
bbGBLUP can be implemented with standard software used 
for conventional AM-BLUP. 
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