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ABSTRACT: A stochastic simulation study was conducted 
to analyze four different methods to combine five traits into 
a total merit index. The reference method was a multitrait 
evaluation based on raw data. Two methods were variations 
of an approximate multitrait model; one based on yield 
deviations, the other on de-regressed estimated breeding 
values (EBVs). The fourth method was an adaptation of the 
selection index that is used in the routine evaluation in 
Austria and Germany. Both approximate multitrait models 
turned out to be very close to the reference model. The 
selection index method showed good results in most cases 
but led to a noticeable bias in EBVs in the case of high 
residual covariances. The results of this study are 
encouraging to move towards the approximate multitrait 
approach, but further analyses are necessary before it can be 
implemented in the routine evaluation. 
Keywords: stochastic simulation; total merit index; genetic 
evaluation; multitrait model; selection index 
 

Introduction 
 

Modern dairy cattle breeding goals include several 
production and increasingly more functional traits. 
Estimated breeding values (EBVs) of the traits that are 
combined in the total merit index (TMI), usually come from 
single trait models or from multivariate models for groups 
of traits (e.g. Fuerst et al., 2013). It is well known that the 
reliability of the EBV can be increased by using multitrait 
models to fully exploit information of correlated traits (e.g. 
Thompson and Meyer, 1986). In most cases, a multivariate 
animal model based on raw data for all traits in the total 
merit index is not feasible. Therefore, proper 
approximations are needed in the routine evaluation. 
Ducrocq et al. (2001) and Lassen et al. (2007) proposed an 
approximate multitrait model using a two-step procedure. 
The first step is a single trait model for all traits to calculate 
yield deviations (YDs) for each animal. In the second step a 
multitrait animal model, correcting for the random genetic 
animal and a fixed year effect, is applied. 

In the joint genetic evaluation in Austria and 
Germany, a method based on selection index theory (Hazel 
and Lush, 1942) proposed by Miesenberger (1997) is in use 
for the TMI and several sub-indices for all breeds except 
Holstein.  

The aims of this study were (1) to simulate data for 
five traits and a simplified but representative cattle 
population scheme and (2) to compare different methods to 
calculate a TMI.  
 

Materials and Methods 
 

Simulation. A population structure roughly 
modeling Austrian Brown Swiss cattle was simulated with 

the stochastic simulation program ADAM (Pedersen et al., 
2009). The simulated population size was approximately 
50,000 cows distributed on 3,420 herds. Five normally 
distributed traits were chosen to represent the trait blocks 
milk, beef and fitness, with a wide range of heritabilities 
and genetic correlations. Four traits, fat yield, protein yield, 
somatic cell count and non-return rate, were measured on 
all females and net daily gain on approximately 85% of all 
male animals. No repeated records were assumed. A 
selection scheme with 25% young bulls and 75% proven 
bulls was simulated. Breeding values and phenotypes for 
the five traits were simulated for base population animals. 
Afterwards, animals were selected on a TMI based on 
multivariately estimated EBVs over 20 years. Relative 
economic weights per genetic standard deviation for fat 
yield, protein yield, net daily gain, somatic cell count and 
non-return rate were close to the values in the routine 
evaluation, which are 5.4, 53.6, 4.3, 17.0 and 19.7%, 
respectively. Heritabilities and genetic correlations between 
the five traits are shown in Table 1. Three scenarios with 
respect to the covariances of the residual effects were 
simulated. In scenarios 0, 1 and 2, residual correlations 
were varied from zero, to half of, and equal to the genetic 
correlations, respectively. These scenarios were chosen to 
specifically test the method of Miesenberger (1997) for a 
possible bias, because it ignores correlations between 
residual effects. Three replicates were simulated for each 
scenario. 

 
Table 1. True genetic parameters (heritabilities on 
diagonal, genetic correlations above diagonal). 
Trait Fkg Pkg NDG SCC NRR 
Fkg 0.40 0.85 0.10 0.25 -0.20 
Pkg  0.39 0.10 0.25 -0.20 
NDG   0.27 0.00 0.00 
SCC    0.12 -0.10 
NRR     0.02 
Fkg=fat yield, Pkg=Protein yield, NDG=net daily gain, 
SCC=somatic cell count, NRR=non return rate 

 
 
TMI methods. The reference method was a 

multitrait animal model based on raw data using the true 
genetic and phenotypic parameters (method MULTI). The 
statistical model included a fixed herd-year-effect, a 
random genetic and a random residual effect. Method YD 
was the approximate multitrait approach proposed by 
Ducrocq et al. (2001), which is based on YDs. A 
modification of this approach was applied by using de-
regressed EBVs (drEBVs) instead of YDs (method DR). 
For both methods, YD and DR, univariate genetic 
evaluations were necessary for each trait to calculate YDs 
and drEBVs. This was done with the program package 



MiX99 (Lidauer et al., 2013). Based on reliabilities using 
the program ApaX (Stranden et al., 2001), effective own 
performances were used as weights for YDs and drEBVs. 
The TMI was calculated by multiplying the multivariately 
estimated EBVs with the economic weights for all three 
methods, MULTI, YD and DR. The fourth method was the 
approach currently used in the routine evaluation. EBVs of 
the five traits were estimated univariately and then 
combined by applying the selection index method of 
Miesenberger (1997). In this adaptation of the selection 
index method (Hazel and Lush, 1942), EBVs are combined 
instead of phenotypes (method M). The covariances 
between the EBVs (σxy ) are calculated as: 

σxy = rgxy r2
x r2

y σax σay 
where rgxy = genetic correlation between traits x and y, r2

x,y 
= reliabilities of EBVs for traits x and y, and σax, σay = 
additive genetic standard deviations of traits x and y, 
respectively. This means that residual correlations are 
neglected, i.e. assumed to be zero. 

For all methods, genetic parameters were not re-
estimated, but the true (simulated) parameters were used. 
All EBVs were transformed to relative breeding values 
(RBV) by standardizing to 12 points per additive genetic 
standard deviation; the base was set to 100 for the years 10 
to 15 (RBV 100/12).  
 

Results and Discussion 
 

Correlations. Table 2 shows the Spearman rank 
correlations between the different TMIs and the true TMI 
for scenarios 0 and 2. Across all animals from year 1 to 20, 
the correlations were above 0.93 for all methods that 
assumed zero residual correlations. These correlations are 
very high because of the strong genetic trend in this 
simulation. Therefore the correlations in Table 2 are within 
year groups to reduce the effect of the genetic trend. 
Correlations were very similar for the methods MULTI, YD 
and DR. However, for method M, correlations were lower 
for all year groups. Overall, rank correlations for scenario 2, 
where the residual (and thus the phenotypic) correlation 
was equal to the genetic correlation, were slightly lower for 
all methods. Results for scenario 1 are not shown, but were 
in general between scenarios 0 and 2. 

 
 Table 2. Rank correlations with true TMI within year  
groups for different TMI methods for scenarios 0 and 2. 
Scen. Years MULTI YD DR M 
0 All 0.9357 0.9357 0.9357 0.9311 
 1-5 0.6395 0.6389 0.6394 0.6168 
 6-10 0.6902 0.6900 0.6901 0.6706 
 11-15 0.6731 0.6730 0.6730 0.6401 
 16-20 0.6344 0.6345 0.6345 0.6050 
2 All 0.9238 0.9238 0.9238 0.9174 
 1-5 0.6840 0.6835 0.6839 0.6580 
 6-10 0.6400 0.6398 0.6400 0.6078 
 11-15 0.6281 0.6278 0.6281 0.5942 
 16-20 0.6251 0.6247 0.6251 0.5838 

 
 

Correlations with reference method MULTI for 
scenario 2 (Table 3) were close to 1 for methods YD and 
DR, whereas correlations for method M were between 0.93 
and 0.96. For scenarios 0 and 1, the correlations were 
slightly higher for method M than for scenario 2.  

 
Table 3. Rank correlations with multivariate TMI within 
year groups for different TMI methods for scenario 2. 
Years YD DR M 
All 0.9999 1.0000 0.9928 
1-5 0.9992 0.9999 0.9574 
6-10 0.9993 0.9999 0.9479 
11-15 0.9993 0.9999 0.9447 
16-20 0.9991 0.9999 0.9355 

 
Bias. The bias of the different TMIs from the true 

TMI was calculated by subtracting the true TMI from the 
estimated TMI for all animals, both expressed as RBV 
(100/12). Results for scenarios 0 and 2 are shown in Table 
4. With no residual covariance (scenario 0) all methods 
showed rather good results with respect to bias. Only in the 
very first years of selection some bias was observed, which 
is probably due to incomplete pedigrees and the use of 
phantom parent groups. This was also valid for scenario 2, 
except for method M. Method M led to a markedly 
overestimated genetic trend, which is expressed as a 
downwards bias in the first years and an upwards bias in the 
last years (Figure 1). This result was even stronger for the 
best 10% of the animals for TMI per year (Table 5), 
showing an overestimation of the top animals with method 
M. This is the result of an inflated variance of the TMI with 
method M, particularly in the presence of residual 
covariances. 

 
Table 4. Bias (EBV-TBV) of different TMI methods from 
true TMI within year groups for scenarios 0 and 2. 
Scen. Years MULTI YD DR M 
0 All 0.4 0.6 0.4 -0.6 
 1-5 1.6 2.7 1.9 -1.7 
 6-10 0.6 1.1 0.7 -1.3 
 11-15 -0.1 -0.1 -0.1 0.0 
 16-20 -0.6 -1.2 -0.8 0.5 
2 All 0.3 0.6 0.4 -0.9 
 1-5 1.0 2.1 1.4 -4.7 
 6-10 0.2 0.7 0.4 -2.9 
 11-15 0.0 0.0 0.0 0.4 
 16-20 0.1 -0.4 -0.1 3.5 
 

 
Conclusions 

 
Results show that all analyzed methods to 

calculate a TMI lead to quite high correlations with the true 
TMI. This is particularly true when residual covariances are 
zero or low. However, in real data, residual covariances can 
be relevant. The approximate multitrait approach proposed 
by Ducrocq et al. (2001) gives results that are very close to 
multitrait evaluation based on raw data. This is not only 
valid with YDs, using drEBVs even gives slightly better 
results. From the results of this simulation, drEBVs could 



be a good alternative to YDs, as they might be easier to 
obtain in some cases (e.g. persistency). This could also help 
to include Interbull EBVs in national evaluations, as 
individual YDs are not available at the international level. 
The currently used method M shows good results for higher 
reliabilities but leads to inflated deviations with low 
reliabilities. This results in a bias, particularly for the top 
animals and is therefore relevant in terms of selection 
accuracy. 

 
 
 

Figure 1. Time trend of bias (EBV-TBV) of different TMI 
methods for scenario 2. 

 
 
 
 
 
 
Table 5. Bias (EBV-TBV) of different TMI methods from 
true TMI for the top 10% within year groups for scenario2 
Years MULTI YD DR M 
All 0.3 -0.4 0.1 4.4 
1-5 0.8 1.6 1.1 -3.7 
6-10 0.0 0.7 0.3 -4.6 
11-15 0.5 -0.4 0.2 2.8 
16-20 0.3 -0.5 0.0 5.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of this simulation study are 

encouraging to replace the current method of TMI and sub-

index calculation by the approximate multitrait approach. 
Both versions with YDs and with drEBVs appear to work 
fine. The crucial point for implementation in routine 
evaluation is that it is a very difficult task to estimate all 
genetic and residual (co)variances for all traits in the TMI. 
For example, 15 different traits with their economic weights 
plus several indicator traits are currently included in the 
official TMI for Brown Swiss. Another important point is to 
incorporate genomic information from the national and 
international genomic evaluations (e.g. Intergenomics). 
Therefore, further scenarios and analyses are necessary 
before implementation into the routine evaluation is 
feasible. 
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