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ABSTRACT: The major goal of this study is identification 
of SNPs with rare allelic variants i.e. with minor allele 
frequency lower than 1%, in data set of bulls from Polish 
Holstein-Friesian breed, and comparison of accuracy of 
breeding value prediction for data sets with and without 
rare alleles. Data set consisted of 3,100 proven and 1,968 
young bulls. Each bull was genotyped using 50K Illumina 
BeadChip. In our analysis production, fertility and udder 
health traits were considered. Using SNP and SNP-BLUP 
model two evaluations were carried out: (1) with all 
available SNPs, including rare variants (53,862 SNPs); (2) 
with common SNPs only, for which minor allele frequency 
exceeds 1% (46,267 SNPs). Finally, statistical significance 
of SNP estimates and reliability of predicted breeding 
values were compared between two data sets. Results 
showed that including rare variants into analysis increase 
the accuracy of DGV and GEBV. 
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Introduction 
 

Predicting phenotypes from genotype data is 
important for plant and animal breeding, and evolutionary 
biology. Genomic-based phenotype prediction has been 
applied using data from single-nucleotide polymorphism 
(SNP) genotyping platforms. Usually, a set of markers 
included in the final analysis is edited based on a minor 
allele frequency (MAF) and a call rate. Such filtering leads 
to the fact that additive effects of SNPs with rare genotypes 
are not considered in the analysis and impact of such 
markers on estimated breeding values is unknown. 
Recently, rare genetic variants, i.e. polymorphisms with 
low minor allele frequency have been brought into focus in 
the context of genetic determination of complex traits. The 
main reason for this is the phenomenon of so called 
“missing heritability” indicated for most of the complex 
phenotypes measured in humans, which denotes that 
common polymorphisms are able to explain only a small 
proportion of the underlying genetic variation of such traits 
(Manolio et al. (2009)). Consequently, it is expected that 
those are rare variants which represent functional 
mutations, exhibit large effects on complex phenotypes and 
are thus responsible for a considerable proportion of the 
observed genetic variation. The biological explanation is 
that since a mutation is functional, it is subjected to 
selection, which as a consequence, affects the population 
allele frequency stronger than in the case of a neutral 
mutation (Frazer et al. (2009)). Dairy cattle poses an ideal 
population to verify this hypothesis. It has undergone a 

directional selection on production traits for many 
generations and it has very good records of complex traits 
and familial relationship. Moreover, recent success of 
genomic selection provided extensive information on 
genotypes of single nucleotide polymorphisms distributed 
all over the genome and available for many individuals. 

 
 The main goal of our study was to verify whether 
including rare variants into a genomic selection model 
allows for capturing a considerable part of missing 
heritability underlying traits under selection in dairy cattle, 
by comparing the accuracy of breeding value prediction 
using only common variants and a mixture of common and 
rare variants. 

 
 

Materials and Methods 
 

Animals. The core data set represented the status 
quo of the evaluation from April 2009 with traits 
represented by EBVs for three production traits: milk- 
(MY), protein- (PY) and fat- (FY) yields, an udder health 
trait represented by somatic cell score (SCS) and two 
fertility traits: non-return rate of heifers (HCO) and non 
return rate of cows (CC1). The trait values were 
deregressed using the method described by Jairath et al. 
(1998). The training part used for the estimation of additive 
effects of SNPs, consisted of 3,100 Polish Holstein-Friesian 
proven bulls with the average number of effective daughters 
(EDC) equal to 275 (11-14,403) for production traits, 338 
(11-17,311) for udder health trait and 202 (11-8,765) for 
fertility traits. The validation part consisted of 1,968 young 
bulls without daughters. 

 
Genotypes. SNP genotypes were detected by the 

use of the Illumina BovineSNP50 Genotyping BeadChip, 
which consists of 54,001 SNPs (version 1) or 54,609 SNPs 
(version 2). The original set of SNPs used for the estimation 
of Direct Genomic Values (DGV) consisted of 46,267 
polymorphisms resulting from filtering based on minor 
allele frequency (MAF), with a minimum MAF of 0.01, and 
technical SNP quality expressed by the minimum call rate 
of 90%. The data set including rare variants was selected 
without SNP filtering on MAF and consisted of 53,862 
polymorphisms. 

 
DGV estimation. The following model was used 

to estimate additive effects of SNPs: y = 𝐗b + 𝐙𝐠 + 𝐞, 
where y represents a vector of deregressed EBVs, X is 
a design matrix for fixed effects, b is a vector of fixed 



effects, which in the current model comprise only a general 
mean, 𝐙 is a design matrix for SNP genotypes, which is 
parameterized as 0, 1, and 2 for a homozygous, 
a heterozygous, and an alternative homozygous SNP 
genotype respectively, 𝐠 is a vector of random additive SNP 

effects assuming 𝐠~N 𝟎, 𝐈 !!!

!!"#
 with I being an identity 

matrix and σ!!  representing the estimate of the additive 
genetic variance of a given trait, and 𝒆  is a vector of 
residuals with 𝐞~N 𝟎,𝐃σ!!  with D being a diagonal matrix 
containing the reciprocal of EDC on the diagonal. A direct 
Genomic Value (DGV) is the sum of additive effects of 
SNPs: 𝐃𝐆𝐕 = 𝐗b + 𝐙𝐠 . 

 
GEBV estimation. Genomically Enhanced 

Breeding Values (GEBV) are the combination of own 
genomic information contained in SNP estimates 
represented by DGV and polygenic information contained 
in phenotypes of relatives represented by EBV. 
Consequently, GEBV of proven bulls is given by: 
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where PI represents pedigree index and rx is a reliability of 
a given source of information. In the current analysis PI 
was calculated using values corresponding to the national 
genetic evaluation from April 2009. The reliability of DGV 
was estimated by the approach of Strandén and Garrick 
(2009) with SNP allele frequencies in the base population 
estimated following VanRaden (2008).  

 
Validation. The assessment of the predictive 

ability of the model was carried out using the standard 
procedure recommended by the Interbull organization 
(Mäntysaari et al. (2010)) with the historical data set 
represented by information from and active dairy cattle 
population from April 2009 and the current data set 
represented by information from April 2013. The validation 
test was calculated for two data sets – ORIG and RARE. 

 
Results and Discussion 

 
 Figure 1 presents comparison of common SNP 
effects between ORIG and RARE data sets.  There are 
considerable differences in effects of SNPs across the 
whole genome. It shows that SNPs with rare variants can 
influence on genomic breeding value estimates. 
 
 
 
 
 

 
Figure 1: A Manhattan plot of absolute differences in 
common SNP effects estimated based on RARE and 
ORIG data sets. 
 
 

  
Figure 2: Comparison of accuracy of Direct Genomic 
Values (DGV) for training animals calculated based on 
ORIG and RARE data sets. 
 
 
 Figure 2 depicts the accuracy of DGV. For each 
trait the accuracy obtained for the RARE data set is higher 
than for the ORIG data. The largest differences are 
observed for fertility traits, HCO - 21% and CC1 - 19%. 
For the other traits the difference is considerably lower and 
does not exceed 5%.   
  
 Figure 3 presents the accuracy of GEBV. We can 
observe a similar situation as for DGV -  the largest 
differences in accuracy for GEBV occur for fertility traits 
(HCO - 17% and CC1 - 16%) while for the other traits the 
difference is in maximum 2%. 
 
 The comparison of slope  is presented on figure 4. 
For production and udder health traits there are no 
significant differences. For CC1 the difference  is very large 
and it shows that including  rare variants  results in the 
overestimation of slope coefficient in this test. 
 



 
Figure 3: Comparison of accuracy of Genomically 
Enhanced Breeding Values (GEBV) for training animals 
calculated based on ORIG and RARE data sets. 
 
 

 
Figure 4: Comparison of slope coefficient for Interbull 
model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusions 
 
 The results showed that including the rare variants 
into analysis increase the accuracy of DGV and GEBV for 
each kind of trait. Especially huge increasing we can 
observe for traits with low heritability (fertility traits). 
Additionally including the rare variants into analysis could 
be helpful  for capturing a considerable part of missing 
heritability underlying traits under selection in dairy cattle - 
the markers from RARE data set can explain more missing 
heritability and markers from ORIG data set can change its 
effects.  
 
 Instead of many advantages of including the rare 
variants into analysis we should be more carefully in 
interpreting the results because especially for low-heritable 
traits  can we observe the  effect of overestimation of the 
slope coefficient in the Interbull test. 
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