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ABSTRACT. Whole-genome regression models have 
become ubiquitous for analysis and prediction of complex 
traits. In human genetics, these methods are commonly used 
for inferences about genetic parameters. This is so despite 
the fact that some of the assumptions commonly adopted for 
data analysis are at odds with important quantitative genetic 
principles. In this article we develop theory that leads to a 
precise definition of parameters arising in regression models 
using genomic data. Our approach is framed within the 
classical quantitative genetics paradigm. We discuss how 
these parameters relate to statistical parameters, indicate 
potential inferential problems and provide a limited set of 
simulations where some statistical properties of likelihood-
based estimates are assessed.  
Keywords: Genomic heritability; G-BLUP; Quantitative 
genetics; Whole-genome regression; Missing heritability. 

 
Introduction 

 
Whole-genome regression (WGR) methods 

(Meuwissen, Hayes, and Goddard, 2001) are becoming 
increasingly used for analysis and prediction of complex 
traits. These methods were first used for prediction in 
animal and plant breeding. More recently, there has been 
interest in the use of WGR methods for inferences about 
“genomic heritability” (e.g., Yang et al. , 2010).  

Prediction and inference are two different 
problems: a model that yields good (e.g., unbiased and 
precise) estimates may have poor prediction performance 
and vice versa.  Unfortunately, little is known about the 
inferential properties of estimates derived from WGR 
models. For example, it is unclear whether the likelihood-
based estimators commonly used estimate population 
parameters consistently (de los Campos and Sorensen 
2013).   

Before the introduction of dense genetic marker 
information, a common approach used to infer genetic 
variances and derived parameters was based on mixed linear 
models applied to family data (e.g., Henderson, 1975). With 
use of molecular markers it has become possible to assess 
kinship among nominally unrelated individuals. With this, it 
is now feasible to analyze data from nominally unrelated 
individuals using methods originally developed for family 
data. This has made evident the distinction between the data 
generating process and the model used for data analysis, or 
instrumental model: the marker genotype information 
embedded in the instrumental model is used in lieu of the 
“causal” genotypes that are part of the classical model of 
quantitative genetics. Once the distinction between the 
instrumental and the true model is made, it is no longer clear 
whether or not the parameters of the instrumental model 

(e.g., the genomic variance) can be equated to population 
parameters of interest (e.g., the genetic variance).  

In human genetics, Yang et al. (2010) was the first 
study that used a WGR approach for estimation of ‘genomic 
heritability’. Using a G-BLUP type model, these authors 
found that approximately half of the heritability of human 
height was captured by common SNPs as opposed to the 5-
10% explained by GWAS-significant SNPs (Lango Allen et 
al. 2010). The proportion of unexplained genetic variance 
can be interpreted as ‘missing heritability’ and it has been 
attributed to imperfect LD between the markers used and the 
QTL affecting the trait. In the literature (e.g., Yang et al. 
2010; Zaitlen and Kraft 2012; Speed et al. 2012) genetic 
parameters (e.g., heritability or genomic heritability) have 
been defined based on the statistical assumptions adopted in 
the instrumental model, some of which are at odds with 
principles of quantitative genetic theory. This results in a 
fuzzy connection between statistical parameters and the 
quantitative genetic parameters one wishes to infer. 

The primary contribution of this paper is to 
develop theory leading to precise definitions of parameters 
arising in WGRs. Our approach is framed within the 
classical quantitative genetics paradigm. We discuss how 
these parameters relate to statistical parameters defined 
based on models commonly used for data analysis, consider 
potential estimation problems that may emerge, and provide 
a limited set of simulations where some properties of 
likelihood-based estimates are assessed.  

 
Theory 

 
In standard quantitative genetic theory (Falconer 

and Mackay 1996) additive genetic values are linear 
functions of allele content at one or more QTL. Concepts 
such as the allele substitution effect in a population or 
narrow sense heritability are defined with reference to this 
framework. However, in practice, the set of genes affecting 
a complex trait is typically unknown and empirical 
(instrumental) linear regression models are fitted using 
markers whose alleles are typically in imperfect LD with 
those at QTL. Concepts such as the “additive effect of a 
marker”, or amount of variance explained by marker effects 
(the “genomic variance”) have appeared in the literature 
(e.g., Goddard 2009). However, a precise definition of these 
parameters and a mathematical treatment that holds 
regardless of trait architecture or patterns of LD are lacking. 
In this section we attempt to fill this gap by presenting 
theory framed within a quantitative genetics perspective.  

 
 
 
 



 
 

Conceptual QTL model 
 
Assume that a trait of interest measured on 

individual i (𝑦𝑖) is affected by alleles at q bi-allelic QTL. In 
quantitative genetics, the genetic value of an individual is 
defined as the expected phenotypic value given QTL 
genotypes, 𝑧𝑖 = �𝑧𝑖1, … , 𝑧𝑖𝑞�

′
 , 𝑔𝑖 = 𝐸(𝑦𝑖|𝑧𝑖) . The 

conditional expectation function may not be linear on QTL; 
however, regardless of the genetic mechanism, one can 
always define a linear approximation of the form 

𝑦𝑖 = 𝛼′𝑧𝑖 + 𝛿𝑖.   [1] 
where 𝛼 , a column vector of dimension q, represents the 
vector of effects of allele substitutions (Falconer and 
Mackay 1996), defined as the regression of 𝑔𝑖  or 𝑦𝑖  on 𝑧𝑖 , 
that is 

𝛼 = 𝐶𝑜𝑣(𝑧𝑖 , 𝑧𝑖 ′ )−1𝐶𝑜𝑣(𝑧𝑖 ,𝑔𝑖) = 𝛴𝑧−1𝛴𝑧𝑔.   [2] 
Above, 𝛴𝑧 is a q×q matrix whose entries are the variances 
and covariances of allelic contents at the q QTL, and 𝛴𝑧𝑔is a 
q-dimensional vector containing covariances between QTL 
genotypes and genetic value. In [1], the deviate 
𝛿𝑖 is a random residual that includes environmental and 
genetic effects that cannot be captured by the linear 
regression on allele contents, e.g., dominance, epistasis and 
QTL-environment interactions. By construction 𝛿𝑖  is 
uncorrelated with 𝑧𝑖 . The terms 𝛴𝑧  and 𝛴𝑧𝑔 , and therefore 
𝛼 , are viewed as fixed population quantities and not as 
random variables. On the other hand, 𝛼 ′𝑧𝑖,  is random 
because QTL genotypes vary between individuals. 

Equation [1] leads to the decomposition of 
phenotypic variance, 𝑉𝑎𝑟(𝑦𝑖) = 𝑉𝑎𝑟(𝛼 ′𝑧𝑖) + 𝑉𝑎𝑟(𝛿𝑖) , 
or 𝜎𝑦2 = 𝜎𝑎2 + 𝜎𝛿2  ,   where 

            
𝜎𝑎2 = 𝛼 ′𝛴𝑧𝛼 = ∑ ∑ 𝐶𝑜𝑣�𝑧𝑖𝑗 , 𝑧𝑖𝑗′�𝛼𝑗𝛼𝑗′

𝑞
𝑗′=1

𝑞
𝑗=1       [3] ,      

is the additive genetic variance, stemming from the 
regression of phenotype on allelic contents at QTL. 
Randomness in [3] arises from variation and covariation of 
allelic contents at the QTL, as postulated in the standard 
quantitative genetic model, e.g., Falconer and Mackay 
(1996), and 𝛼 is a fixed parameter. Expression [3] shows 
that the additive variance is not only a function of the 
variances of QTL genotypes (the diagonal elements of  𝛴𝑧) 
but also of the patterns of LD between QTL (the off-
diagonal elements of 𝛴𝑧 ). For this reason, in general, the 
additive variance cannot be partitioned into locus-specific 
components (Daniel Gianola, Hospital, and Verrier 2013).  

Narrow sense heritability is defined as the 
proportion of phenotypic variance explained by additive 
effects, that is 

 ℎ2 =
𝜎𝑎2

𝜎𝑦2
=

𝜎𝑎2

𝜎𝑎2 + 𝜎𝛿2
=

𝛼′∑𝑧𝛼
𝛼′∑𝑧𝛼 + 𝜎𝛿2

 

 
Instrumental Model (regression on markers) 

 
In practice, the QTL are unknown, thus their 

genotypes and effects. Empirically, the analysis is carried 
out using p markers with genotype codes in the vector 
𝑥𝑖 = {𝑥𝑖1, … , 𝑥𝑖𝑝}′ ; as before, we assume that marker 

genotypes have been centered. The marked additive genetic 
value can be defined as the regression of the true additive 
genetic value, 𝛼′𝑧𝑖, on allelic content at marker loci, that is 

              𝛼 ′𝑧𝑖 = 𝛽′𝑥𝑖 + 𝜉𝑖  ,   [4] 
where 𝜉𝑖 is a model residual representing components of the 
true additive genetic values that cannot be explained by a 
regression on markers. 

Marker effects are defined as the multivariate 
multiple regression of additive genetic values on markers, as 
     𝛽 = 𝑉𝑎𝑟(𝑥𝑖)−1𝐶𝑜𝑣�𝑥𝑖 , 𝑧𝑖′𝛼� = 𝛴𝑥−1𝛴𝑥𝑧𝛼 = 𝐵𝛼         [5] 
where  𝛴𝑥  is the p×p covariance matrix among marker 
genotypes, 𝛴𝑥𝑧  is a p×q matrix of covariances between 
marker and QTL genotypes, and  𝐵 = �𝑏𝑥𝑗𝑧𝑘�  is a p×q 
matrix of regression coefficients.  Since 𝛴𝑥 , 𝛴𝑥𝑧  and 𝛼 are 
fixed population parameters, so is 𝛽.  

Genomic values are then defined as 𝛽′𝑥𝑖 =
𝛼′𝛴𝑧𝑥𝛴𝑥−1𝑥𝑖 = 𝛼′ �̂�𝑖, where �̂�𝑖 = 𝛴𝑧𝑥𝛴𝑥−1𝑥𝑖  is the best linear 
predictor of allele content at QTL, given allele content of 
markers. The variance of genomic values, or genomic 
variance is  

 𝑉𝑎𝑟(𝛽′𝑥𝑖) = 𝛽′𝐶𝑜𝑣(𝑥𝑖 , 𝑥𝑖 ′)𝛽 = 𝛼 ′𝛴𝑧𝑥𝛴𝑥−1𝛴𝑥𝑧𝛼 .          [7] 
Its value depends on the QTL effects (𝛼) and on the LD 
relationships among QTL and markers (via 𝛴𝑥𝑧), and among 
markers (via 𝛴𝑥−1). The variance of the regression residual is 
𝑉𝑎𝑟(𝜉𝑖) = 𝑉𝑎𝑟(𝛼′𝑧𝑖 − 𝑥𝑖 ′𝛽) = 𝛼′ 𝛴𝑧𝛼 − 𝛼 ′𝛴𝑧𝑥𝛴𝑥−1𝛴𝑥𝑧𝛼 

= 𝛼′ (𝛴𝑧 − 𝛴𝑧𝑥𝛴𝑥−1𝛴𝑥𝑧)𝛼 . 
Because 𝜉𝑖 is uncorrelated with 𝑥𝑖, the model in equation [4] 
yields the variance partition 𝑉𝑎𝑟(𝑧𝑖 ′𝛼) = 𝑉𝑎𝑟(𝑥𝑖 ′𝛽) +
𝑉𝑎𝑟(𝜉𝑖), leading  to  
 𝛼′𝛴𝑧𝛼 = 𝛼′𝛴𝑧𝑥𝛴𝑥−1𝛴𝑥𝑧𝛼    + 𝛼′(𝛴𝑧 − 𝛴𝑧𝑥𝛴𝑥−1𝛴𝑥𝑧)𝛼    [8] 
or 𝜎𝑎2 = 𝜎𝑔2 + 𝜎𝑔�2   where, 

𝜎𝑔2 = 𝑉𝑎𝑟(𝑥𝑖 ′𝛽|𝛼) = 𝛼′𝛴𝑧𝑥𝛴𝑥−1𝛴𝑥𝑧𝛼 ,           [9] 
the genomic variance, is interpretable as the amount of 
additive variance captured by the regression on markers.  
Likewise, 𝜎𝑔�2  can be interpreted as the “missing” additive 
genetic variance, that is, the variability yet to be marked.  

In the above definition we used standard 
quantitative genetic theory assumptions where genotypes 
are random and additive effects (𝛼) are fixed. As stated, the 
genomic variance as defined in expression [9], depends on 
additive effects 𝛼 at QTL and on the patterns of LD between 
markers and QTL (𝛴𝑥𝑧) and among markers (𝛴𝑥).  

The ratio σg2/σa2  represents the proportion of 
additive variance that is explained by a linear regression on 
available markers and the product of this ratio times the trait 
heritability is the proportion of variance of phenotypes 
explained by the regression on markers, or genomic 
heritability: 

ℎ𝑔2 = ℎ2 σg2

σa2
= σa2

σy2
σg2

σa2
= σG

2

σy2
  [10] 

The proportion of missing heritability can be defined as a 
population parameter as  

ℎ2 − ℎ𝑔2

ℎ2
=
𝜎𝑎2 − 𝜎𝑔2

𝜎𝑎2
=
𝛼′(𝛴𝑧 − 𝛴𝑧𝑥𝛴𝑥−1𝛴𝑥𝑧)𝛼

𝛼′𝛴𝑧𝛼
. 

This parameter is defined with respect to a trait in a 
population and in reference to a technology (i.e., a set of 
markers). 



 
 

 
Special Cases 

 
With only a single marker-QTL pair, 𝛴𝑧𝑥  and 𝛴𝑥 

are scalars and expression [5] becomes 𝛽 = 𝛴𝑥−1𝛴𝑥𝑧𝛼 =

𝑏𝑧𝑥𝛼  where 𝑏𝑧𝑥 = 𝑐𝑜𝑣(𝑥𝑖,𝑧𝑖)
𝑣𝑎𝑟(𝑥𝑖)

 is the (population) linear 
regression of the QTL genotype on the marker genotype. 
The genomic value is then 𝑥𝑖𝛽 = 𝑥𝑖𝑏𝑧𝑥𝛼 , and the 
expression for the genomic variance (equation [9]) reduces 
to 𝜎𝐺2 = 𝑐𝑜𝑣(𝑥𝑖,𝑧𝑖)2

𝑣𝑎𝑟(𝑥𝑖)
𝛼2 . The proportion of additive variance 

explained by the regression on markers, 𝜎𝐺
2

𝜎𝑎2
=

�
𝑐𝑜𝑣�𝑥𝑖,𝑧𝑖�

2

𝑣𝑎𝑟�𝑥𝑖�
𝛼2�

[𝑣𝑎𝑟(𝑧𝑖)𝛼2]
=

𝑟2 , is simply the squared correlation between genotypes at 
the marker locus and at the QTL. Therefore, the genomic 
heritability is ℎ𝑔2 = 𝑟2ℎ2 ≤ ℎ2 . If LD is perfect, ℎ𝑔2 = ℎ2 ; 
otherwise, it will get closer to 0 as LD becomes weaker. 

Multi Marker-QTL pairs in LE. Goddard (2009) 
proposed a framework where QTL are in mutual LE and, for 
each QTL, there is a single associated marker. In this 
stylized setting the genome can be represented as 
independent QTL-markers pairs �𝑧𝑖𝑗 , 𝑥𝑖𝑗� . Under these 
conditions several simplifications occur. Marker effects are 
simply obtained by regressing QTL genotypes on markers 

within pairs, that is 𝛽𝑗 = 𝑏𝑧𝑗𝑥𝑗𝛼𝑗 where 𝑏𝑧𝑗𝑥𝑗 =
𝐶𝑜𝑣�𝑥𝑖𝑗,𝑧𝑖𝑗�

𝑉𝑎𝑟�𝑥𝑖𝑗�
 is 

the regression of the jth QTL on the jth marker. Also, the 
genomic variance can be uniquely decomposed as the sum 

of marker-specific terms: 𝜎𝑔2 = ∑ 𝑐𝑜𝑣�𝑥𝑖𝑗,𝑧𝑖𝑗�
2

𝑣𝑎𝑟�𝑥𝑖𝑗�
𝛼𝑗2𝑗 =

∑ 𝑣𝑎𝑟�𝑧𝑖𝑗�𝑟𝑗2𝛼𝑗2𝑗  where 𝑟𝑗2  is the squared correlation 
between the marker and the QTL genotype at the jth pair  
(Goddard, 2009). This decomposition does not hold if 
multiple markers are linked to the same QLT or if QTL are 
in LD. 

Analysis with “Causal Variants”. With sequence 
data all “causal variants” are expected to be included in the 
marker panel; therefore, it is reasonable to expect that there 
will be no missing heritability. The framework outlined in 
previous sections is consistent with this view. In fact, using 
results of inverses of partitioned matrices, it can be shown 
that when all “causal variants” are included in the marker 
panel, marker effects satisfy 
𝛽𝑗 = �𝛼𝑗  𝑖𝑓 𝑥𝑗  𝑖𝑠 𝑎 𝑄𝑇𝐿 ; 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒� ; therefore the 
genomic variance is equal to the additive variance and, as 
one would expect, there is no missing heritability.  

 
 

On defining genomic variances based on statistical 
models 

 
As stated, in classical quantitative genetics theory, 

genetic variance arises from variation and covariation of 
allelic contents at QTL, and both QTL and marker effects 
are fixed population parameters. On the other hand, in a 
typical Bayesian genomic model marker genotypes are fixed 
quantities and marker effects are regarded as random 

variables. For instance, in the family of models named the 
Bayesian Alphabet  (e.g., Gianola et al. 2009, 2013) marker 
effects 𝑏 = �𝑏𝑗�𝑗=1

𝑝
 are assumed to be identically and 

independently distributed (IID) draws from a common prior 
distribution with null mean and variance 𝑉𝑎𝑟(𝑏𝑗) = 𝜎𝑏2. The 
regression model is built conditional on the observed marker 
genotypes, and the prior variance of the ith genomic value is 
𝑉𝑎𝑟(𝑥𝑖′𝑏|𝑥𝑖) = 𝜎𝑏2 ∑ 𝑥𝑖𝑗2𝑗 . Under HW equilibrium, the 
expected value of this parameter is 

 𝜎𝑢2 = 𝐸�𝑉𝑎𝑟(𝑥𝑖′𝑏|𝑥𝑖)� = 𝜎𝑏2 ∑ 2𝜋𝑗�1 − 𝜋𝑗�𝑗   [11] 
where 𝜋𝑗  represents the frequency of one of the alleles at 
marker j. Expression [11] is usually referred to as the 
“genomic variance” (VanRaden 2008). However, the link 
between [11] and the population parameter 𝜎𝑔2 defined in [7] 
is tenuous. First, from a classical quantitative genetics 
perspective, marker effects are fixed constants and not 
random variables. Importantly, expression [11] suggests that 
the genomic variance can be decomposed into locus-specific 
components. However as noted earlier, under general 
conditions this is not possible, because LD affects both the 
additive and the genomic variances, precluding a 
decomposition such as that implied by [11]. 

 
Estimation of Genomic Variance Using a G-BLUP 
model 

 
Above we argued that the statistical parameter 𝜎𝑢2 

has a tenuous connection with the population parameter 𝜎𝑔2. 
Another important consideration is to determine whether 𝜎𝑢 2 
can be correctly inferred. In this section we assess some 
statistical properties of maximum likelihood estimates using 
the Genomic Best Linear Unbiased Predictor (G-BLUP) 
model. In G-BLUP phenotypes are regressed on markers 
using the linear model 𝑦𝑖 = ∑ 𝑥𝑖𝑗𝑏𝑗𝑗 + 𝜀𝑖  where 
𝑏𝑗~𝑖𝑖𝑑𝑁(0,𝜎𝑏2) and 𝜀𝑗~𝑖𝑖𝑑𝑁(0,𝜎𝜀2). The model implies the 
marginal distribution of phenotypes 

𝑦~𝑁(0,𝐺𝜎𝑢2 + 𝐼𝜎𝜀2)   [12] 
where 𝐺 is a genomic-relationship matrix  and 𝜎𝑢2 is a 
variance parameter. Maximizing the likelihood function 
associated with [12] yields maximum likelihood estimates 
of variance components and of the proportion of variance 
explained by the model ℎ𝑢2 = 𝜎𝑢2

𝜎𝑢2+𝜎𝜀2
 . Since 𝐺 is computed 

based on markers that are in imperfect LD with QTL, the 
(co)variance patterns of additive effects and consequently 
the likelihood function, can be misspecified; this can lead to 
inconsistency of estimates.  

 
Simulation Studies 

 
Phenotypes were generated according to the 

additive QTL model of eq. [1]. QTL effects and error terms 
were sampled from IID normal distributions with variance 
parameters tuned to achieve a unit phenotypic variance and 
ℎ2 = 0.5. Two simulations were considered. In the first one, 
markers and QTL were generated according to stylized LD 
patterns; in a second simulation we used real human 
genotypes.  



 
 

 
Simulation 1 (simplified LD patterns) 

 
Here, allele frequencies were sampled from a beta 

distribution with shape parameters equal to 2 and 8. This 
gives an average allele frequency of 0.2 and a relatively 
large range of variability in MAF. Haplotypes were 
simulated with a Markov process where the extent of LD 
within blocks was controlled by transition probability 
parameters. Genotypes were formed by randomly mating 
haplotypes. Genomes consisted of 50,000 loci, 200 of which 
were QTL. We considered 4 simulation settings that differed 
in: (a) number of loci per block and number of blocks and 
(b) whether the patterns of LD were homogeneous or 
heterogeneous across blocks. In scenarios with short LD 
blocks (SB), 10,000 blocks were generated with 5 loci in 
LD in each block. In scenarios with long blocks (LB), 1,000 
blocks were generated each with 50 loci. In scenarios with 
homogeneous LD patterns the transition probability was 
fixed. In scenarios with heterogeneous LD patterns, the 
transition probably at each LD block was sampled from a 
beta distribution with shape parameters 2 and 8. QTL 
positions were chosen at random: in the SB scenarios, 200 
blocks were randomly selected out of the 10,000, and a QTL 
was assigned to a randomly chosen locus within the LD 
block. In LB scenarios the QTL positions were assigned at 
random within the 50K-loci genome.  

A total of 3,000 Monte Carlo (MC) replicates, each 
with a population size of 10,000 were generated.  All these 
10,000 individuals were used to calculate population 
parameters such as genetic, phenotypic and genomic 
variances using formulae presented previously.  From the 
10K individuals, 1K were chosen at random, and data from 
these were used to estimate heritability and genomic 
heritability using a G-BLUP model.  The G-BLUP model 
was fitted using genomic relationship matrices computed 
using only QTL; QTL and markers in the LD blocks 
containing QTL (QTL+MRK.LD); all loci (ALL); only 
MRK.LD; MRK.LD plus markers in LE with QTL 
(MRK.LD+MRK.LE), and only MRK.LE. According to the 
theory above-described, in the analysis setting where QTL 
are in the panel (QTL, QTL+MRK.LD, ALL loci) ℎ𝑔2 =
ℎ2 = 0.5 . In analysis using MRK.LD and 
MRK.LD+MRK.LE the proportion of variance explained is 
ℎ𝐺2 ≤ 0.5. Finally, in the scenario including only MRK.LE 
ℎ𝐺2 = 0.  

Results. Table 1 shows the average (over MC 
replicates) estimates of heritability and genomic heritability. 
Columns 3-4 of Table 1 provide the population parameters 
and columns 5-10 provide the average MC estimates and the 
corresponding SEs, by scenario and model. Heritability was 
0.5, and genomic heritability ranged from values close to 
0.3 in SB scenarios and slightly higher 0.327-0.328 in LB 
scenarios. When only QTL genotypes were used to compute 
the G-matrix (column 5 in Table 1) the average estimated 
genomic heritability was 0.5 and the estimates were rather 
precise. This suggests that ML estimation with this sample 
size yields estimates with no detectable bias, if the model 
holds.  When QTL+MRK.LD genotypes were used to 

compute G (column 6 of Table 1) the ML estimate of ℎ𝐺2  
was close to the true population parameter in the SB 
scenario, and had a small upward bias in the LB scenarios. 
When MRK in LE were included the SEs increased relative 
to those in the analysis based on QTL only. When 
genotypes at all loci were used to compute G a substantial 
upward bias in estimates of heritability was observed, and 
the bias was largest in the SB scenarios. This is likely due to 
the fact that in this scenario there are many more markers in 
LE with QTL than in the LB scenarios.  

Columns 8-9 of Table 1 show results obtained 
using MRK.LD and MRK.LD+MRK.LE. Here there is 
missing heritability (compare columns 3 and 4 of Table 1). 
In the SB scenario with homogeneous LD patterns (fixed 
transition probability) using MRK.LD genotypes only, the 
genomic heritability was estimated almost without bias. 
However, in all other simulation scenarios there was an 
important upward bias in estimates of genomic heritability. 
This was accentuated when MRK.LE were added to 
MRK.LD to compute G. These results are in line with what 
we observed in the analysis including ALL loci (column 7 
of Table 1) and suggest that adding large numbers of 
markers in LE with QTL increases the sampling variance of 
estimates and may induce bias.  
 
Table 1. Mean (SD) of estimates of genomic heritability by 
simulation scenario (rows) and information used for analysis 
(Columns 5-1). 

 
 
Simulation 2 (with real human genotypes) 
 

This simulation made use of real human genotypes; 
these genotypes reflect LD patterns that are more realistic 
than those considered in the previous section. On the other 
hand, with real genotypes, the population parameters  Σz , 
Σzx and Σx, cannot be reliably estimated using a sample of 
5,000 individuals; therefore the true genomic heritability 
remains unknown. Nevertheless, the analyses were 
performed incorporating only loci assigned as QTL, 
including only loci assigned as markers (MRK), and 
combining markers and QTL (MRK+QTL). According to 
theory, in analyses using QTL and MRK+QTL there is no 
missing heritability.  When only MRK information is used 
there may be missing heritability, but the actual extent is 
unknown because Σz, Σzx and Σx are unknown. 

The genotypes used in the simulation were 
obtained from the type-2 diabetes case-control data set from 
the Nurses’ Health Study and the Health Professionals 
Follow-up; both are part of the Gene-Environment 
Association Studies consortia (GENEVA, 
https://www.genevastudy.org/). We used only genotypes of 

https://www.genevastudy.org/


 
 

nominally unrelated individuals of Caucasian origin and 
with less than 5% missing genotypes. This left 5,000 
individuals for the analysis.   

The simulation setting was similar to that described 
in (de los Campos et al. 2013): from a set of 400K 
(K=1,000) SNPs, 300K loci were randomly chosen and 
designated as markers. From the remaining 100K SNPs, 
5,000 were chosen and designated as QTL using a sampling 
method that over-sampled markers with low minor-allele 
frequency. We generated 1,000 MC replicates and in each 
MC replicate 2,500 individuals were randomly sampled and 
used for estimation of variance parameters. 

For each MC replicate a G-BLUP model was fitted 
to the 2,500 records, using a G matrix computed from: QTL 
genotypes, MRK, and QTL+MRK. In the analysis using 
only QTL information the average estimated genomic 
heritability (.498) was very close to the population 
heritability (.5); the estimated 90% confidence interval 
ranged from .438 to .558. The analysis with markers only 
showed an average estimated genomic heritability of .328, 
suggesting an extent of missing heritability of 34%, similar 
to that reported by de los Campos et al. (2013) who 
analyzed data simulated with a  similar but not identical 
scheme. The sampling variance of the estimator was very 
large, with a 90% CI for the estimated genomic heritability 
ranging from .136 to .517. This indicates that adding 
markers that are in imperfect LD with QTL not only induces 
missing heritability but also adds considerable uncertainty 
to estimates of variance components. Finally, the 
distribution of the estimated genomic heritability obtained 
with markers and QTL was similar to that obtained only 
with markers, but shifted to the right, with a mean equal to 
.411. In this scenario, as stated, there is no missing 
heritability; however the result indicates that likelihood 
estimates of genomic heritability based on the G-BLUP 
model can be biased.  

 
Discussion 

 
In the literature on genomic analysis of complex 

traits, genetic parameters have been commonly defined 
taking the model used for data analysis as starting point 
(Yang et al. 2010; Zaitlen and Kraft 2012; Speed et al. 
2012). This approach has two potential problems. First, 
some of the assumptions of the statistical models used for 
data analysis are at odds with those in standard quantitative 
genetic theory (Falconer and Mackay 1996) making the 
connection between quantitative genetic parameters and 
statistical parameters tenuous. Secondly, because the 
patterns of allele sharing vary across the genome and 
because markers are typically in imperfect LD with QTL, 
marker-based models may largely misrepresent the 
underlying data generating process, leading, potentially, to 
important inferential problems (e.g., inconsistency).  

A first contribution of this article is to provide 
theory, framed within the principles of quantitative 
genetics, that leads to precise definitions of parameters of 
marker-regressions at the population level.  A few important 
results emerge from the definitions and derivations 
presented in this article. 

 Marker and QTL effects are fixed population 
quantities. Genetic and genomic variance stem from 
variation of allele content at QTL and at markers, 
respectively, and not due to uncertainty about QTL or 
marker effects. This is of course at odds with definitions of 
genomic variance based on Bayesian models where marker 
genotypes are treated as fixed and marker effects as random 
variables. From a Bayesian perspective it makes perfect 
sense to implement regressions conditioning on markers and 
with marker effects treated as random variables; however, 
we question the use of these Bayesian models for 
definition of genetic parameters.  

Marker effects are linear combination of QTL 
effects. With high marker density multiple markers are 
likely to track variance from the same QTL. This questions 
the treatment of marker effects as independent random 
variables. For example, if, from a Bayesian perspective, 
QTL effects are treated as IID draws from a normal density, 
then it follows from expression [5] that marker effects are 
MVN distributed with null mean and covariance matrix 
𝐶𝑜𝑣(𝛽) ∝ 𝛴𝑥−1𝛴𝑥𝑧𝛴𝑧𝑥𝛴𝑥−1 . Assuming that all covariances 
are null ignores the fact that multiple markers can track 
variance from the same QTL. Determining the correct 
covariance function is not possible because QTL positions 
are typically unknown. However attempts can be made to 
incorporate LD information in the prior density assigned to 
marker effects (e.g., Yang and Tempelman, 2012). 

The recognition that marker effects are linear 
combinations of QTL effects has a second important 
consequence: LD between markers plays a central role in 
the determination of genomic variances. It is only under 
very idealized (and unrealistic) conditions that the total 
genomic variance can be decomposed into marker-specific 
components. On the other hand, in most of the parametric 
models used for data analysis the assumptions lead to a 
decomposition of the genomic variance that does not 
involve LD (Zaitlen and Kraft 2012). Depending on the 
patterns of LD between markers, ignoring LD may lead to 
under or over estimation of the genomic variance.  

Estimation difficulties. Under regularity 
conditions, likelihood estimates are asymptotically unbiased 
(Lehmann and Casella 1998). However consistency requires 
that the likelihood is correctly specified. The proportion of 
allele sharing at any given set of loci can be viewed as a 
random variable with expected value given by twice the 
kinship coefficient between individuals (derived from a full 
pedigree) and random variation due to Mendelian sampling 
(Hill and Weir 2011). Because of imperfect LD between 
markers and QTL the proportion of allele sharing at markers 
and at QTL can be very different. This is particularly 
important for distantly related individuals (de los Campos et 
al. 2013). It follows that assessment of variance and 
covariance based on markers can misrepresent the true 
patterns of variance and covariance for a given trait. Under 
these conditions the likelihood can be misspecified leading 
to potential inconsistency of estimates.  

There are two cases where the likelihood function 
will not be in error. The first one is when patterns of allele 
sharing at markers and at QTL are very similar. This will 
occur if markers are in tight LD with QTL, or with family 



 
 

data because in this case markers and QTL co-segregate. 
Here, the instrumental model provides inferences about the 
true trait heritability. A second case will occur if the 
component of genetic values that cannot be explained by 
markers (𝜉𝑖 in expression [4]) are IID, and therefore ℎ𝐺2 <
ℎ2  will be inferred consistently. However, there is no good 
reason to believe that the 𝜉𝑖 ′𝑠 are IID, and therefore it is not 
exactly clear if ℎ𝐺2  can be consistently estimated using G-
BLUP. 

Simulation studies using real human genotypes, 
including the one presented here, indicate that estimates of 
genomic heritability ( ℎ𝐺2)  based on a G-BLUP model 
incorporating both markers and QTL genotypes may be 
biased (e.g., Speed et al. 2012). Our simulation study 
indicates that problems are more serious when the patterns 
of LD vary strongly along the genome. Speed et al. (2012) 
argued that a main reason for inconsistency of G-BLUP 
estimates of heritability is that LD is ignored in the 
computation of the G matrix. These authors suggested an 
alternative method for computing G that resulted in 
estimates of genomic heritability closer to the simulated 
heritability of the trait. However, a follow up discussion 
(Lee et al. 2013; Speed et al. 2013) presented alternative 
simulations scenarios where the method of Speed et al. 
(2012) yielded biased estimates. All in all, this suggests that 
the appropriate choice of method for computing G depends 
on the genetic architecture of the trait. From our perspective, 
the main problem does not reside in the way G is computed, 
but rather in the use of massive numbers of markers that are 
in imperfect LD, and some in complete LE, with QTL.  

 
On Genomic Analysis Using Whole-Genome Regressions 

 
Complex traits are affected by large numbers of 

small-effect QTL. The analysis of such traits requires fitting 
large number of variants concurrently using the WGR 
approach originally proposed by (Meuwissen, Hayes, and 
Goddard 2001). Close relatives share long chromosome 
segments and, under these circumstances, the patterns of 
allele sharing at markers and at QTL are very similar. This 
leads to high prediction accuracy and very small bias in 
heritability estimates. On the other hand, with distantly 
related individuals, the addition of large numbers of markers 
that are in LE with QTL can lead to serious problems in the 
specification of genomic relationships. This can result in 
potential inconsistencies of estimates of genomic 
heritability. Importantly, this does not invalidate the use of 
WGR as a prediction machine. Rather, we warn about 
problems arising when these methods are used for 
inferences. We believe that this problem has been 
overlooked and that further research is needed to understand 
if and under what circumstances WGRs such as a G-BLUP 
model can be used to assess the true proportion of variance 
that can be explained by regression on markers in the 
population. 
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