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ABSTRACT: Three methods were tested to select subsets 
of markers from the Illumina BovineSNP50 BeadChip to 
compute genomic evaluations for moderately sized dairy 
cattle populations with ~1000 genotyped bulls.  SNPs were 
selected based on: (1) their effects on the bulls’ genetic 
evaluations for protein production in 2009 through 2013, as 
derived by the “EMMAX” algorithm including only bulls 
with daughter records; (2) their effects in the 2009 evalua-
tions, also including bulls without daughter records; and (3) 
the regression of the SNPs allelic frequency on the bulls' 
birth dates.  Milk, fat, and protein yield, somatic cell score, 
fertility, persistency, herd-life and the Israeli breeding index 
were analyzed by methods 2 and 3.  Once SNPs were se-
lected, only information available in 2009 was used to 
compute genomic evaluations for the validation bulls, who 
did not have daughter records in 2009.  The optimum num-
ber of SNPs, as determined by correlations between ge-
nomic and 2013 evaluations, ranged from 800 for somatic 
cell score to 4000 for fertility. Correlations of up to 0.8 be-
tween genomic and 2013 evaluations for validation bulls 
were obtained by method 1 if markers were selected based 
on the 2013 evaluations, but in this case the selection crite-
ria for SNPs is based on information not available in real 
time.  Correlations of genomic with current evaluations 
greater than those obtained for parent averages were ob-
tained by method 2 for most traits analyzed, and means 
were generally less biased than parent averages, thus meth-
od 2 is optimal for populations of this size.  
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Introduction 
 

Beginning in 2008, a large number of studies have 
proposed methods for genomic evaluations in dairy cattle.  
Most studies have used variations of the method of Van-
Raden (2008) in which the dependent variable is either the 
bulls’ daughter-yield-deviations (DYD) or deregressed es-
timated breeding values (EBV), and the independent varia-
bles are the genotypes of all valid SNPs.  In nearly all cases, 
genomic EBV (GEBV) were evaluated by assigning the 
population of sires with genotypes and EBV based on prog-
eny tests into a “training set,” consisting generally of older 
bulls, and a “validation set” of younger bulls.  The GEBV 
of the validation bulls are then compared to their current 
EBV, DYD or deregressed EBV. With training populations 
consisting of thousands of bulls, reliabilities of > 0.7 can be 
obtained for young bulls with only pedigree and genotypic 

data (e. g., Wiggans et al. (2011)).  However, if the training 
population consists of < 1000 bulls, reliabilities for GEBV 
are no greater than reliabilities based on parent average 
EBV (PA).  

 
Correlations of GEBV of the bulls in the training 

set with current EBV are nearly always much higher than 
correlations of GEBV for the validation bulls. This is be-
cause linkage relationships and the frequencies of segregat-
ing quantitative trait loci change over time (Moser et al. 
(2009)).  Glick et al. (2012) found that out of the 15,485 
haplotypes with frequencies between 5% and 95% in the 
population of Israeli Holstein bulls born since 1984, 930 
haplotypes (6%) underwent significant changes in allelic 
frequencies, resulting in frequencies of either > 10% or < 
90% for the bulls born between 2004 and 2008.  

 
Considering the huge numbers of SNPs included 

on moderate and high density SNP chips, various studies 
have proposed computation of GEBV based on subsets of 
SNPs.  Four basic strategies have been proposed to select 
SNPs: equally spaced SNPs throughout the genome; selec-
tion of SNPs with the greatest effects on the trait analyzed; 
selection of markers based on principal component analysis 
and selection of SNPs based on the difference in allelic 
frequencies of young and old bulls (reviewed by Weller et 
al. (2014)).   

 
Weller et al. (2014) selected SNPs based on the ef-

fects of each marker on the bulls’ genetic evaluations in 
2012 and 2008, respectively, as derived by analysis of all 
valid SNPs by the “EMMAX” algorithm (Kang et al. 
(2010)). The difference between the correlation of GEBV 
and 2012 EBV and the correlation of PA and 2012 EBV 
was greater than 0.25 for all traits if SNPs were selected 
based on the 2012 evaluations, but not if SNPs were select-
ed based on 2008 evaluations.  Thus although it is possible 
to select subsets of markers that can be used to compute 
GEBV with reliabilities much higher than those computed 
based on all markers, the selection algorithm requires in-
formation not available in "real time."  

Weller et al. (2014) also selected SNPs based on 
the differences in allelic frequency between the bulls in the 
training and validation sets.  GEBV computed by SNPs 
selected by this criterion generally outperformed PA, but 
only marginally.  Furthermore, GEBV were generally less 
biased than PA.  In the current study two additional meth-
ods were tested for selecting SNPs based either on their 



effects on the economic traits, or changes in allelic frequen-
cies. 

 
Materials and Methods 

 
Animals genotyped and validation of SNPs.  A 

total of 1132 bulls with reliabilities > 0.5 for milk produc-
tion traits in May, 2013 were genotyped; 912 bulls for the 
54,001 SNP BeadChip, and the remainder for the 54,609 
SNP BovineSNP50 v2 BeadChip.  Birth years ranged from 
1975 through 2009.   

 
SNPs were deleted from analysis if: they did not 

appear on the original BeadChip, the frequency of the less 
frequent allele less than 0.05, there were valid genotypes 
for less than half of the animals genotyped or if the geno-
types of consecutive SNPs were identical for more than 
95% of the animals with valid genotypes.  For several iden-
tical SNPs all were deleted, except the first.  After edits 
there were 38,556 valid SNPs. 

 
The data set and traits analyzed.  Eight traits 

were analyzed; milk fat, and protein production, somatic 
cell score (SCS), female fertility, persistency of milk pro-
duction, herd-life, and PD11, the current Israeli breeding 
index.  EBV were computed for the complete data set 
(EBV13), including all valid records from the Israeli Hol-
stein population from January, 1985, through May, 2013, 
and the truncated data set including only records generated 
prior to June, 2009.  EBV were derived from multi-trait 
animal models for milk, fat, protein, SCS, female fertility 
and persistency; with each parity considered a separate trait, 
as described by Weller and Ezra (2004) and Weller et al. 
(2006).  Parities 1-5 were included in the analyses.  Herdlife 
was analyzed by a single trait model as described by Settar 
and Weller (1999). 

 
The bulls with genotypes and EBV13 with reliabili-

ties > 0.5 were divided into a “training set,” of 884 bulls 
with reliabilities > 0.5 for milk production traits for EBV09 
and the “validation set,” of 163 bulls without daughter rec-
ords in 2009 and reliabilities > 0.5 for production traits for 
EBV13.  The number of bulls in the two sets differed slight-
ly for the non-production traits.  The difference of 4 years 
between validation set and the complete data set was cho-
sen to mimic the actual dairy situation in that young bulls 
reach sexual maturity at the age of one year, and obtain 
their first EBV based on daughter records at approximately 
5 years.  

Modified daughter-yield-deviations (MDYD), 
weighted means of daughter records corrected for herd-
year-season and parity effects; were computed for the bulls 
of the training set the truncated data set (MDYD09), and for 
the validation bulls using all records generated up to May 
2013 (MDYD13), as described by Weller et al. (2014).   

 
Selection of SNPs and evaluation of GEBV.  

Three methods were applied to select subsets of SNPs for 
analysis.  In the first method, applied only to protein,  SNPs 

were selected for each trait based on the fixed additive ef-
fect of each marker on the bulls’ EBV for protein produc-
tion in 2009 through 2013, as derived by analysis of all 
valid SNPs by the “EMMAX” algorithm.  Five different 
subsets were selected, using the EBV computed in June of 
each year.  Only bulls with EBV based on daughter records 
were used to determine SNP effects.  In the second method, 
which was applied to all eight traits, SNPs were selected 
based on their effects in the June, 2009 evaluation, but for 
validation bulls without EBV based on daughter records, 
EBV were computed as PA based on the 2009 EBV of the 
parents.  In the third method, also applied to all eight traits, 
SNPs were selected based on the regression of the SNPs 
allelic frequency on the bulls' birth dates, provided that the 
frequency of the less frequent allele was > 0.1 for bulls born 
after 1984 with EBV in 2009.  The SNPs with the greatest 
absolute values for the regression were retained.  

 
For all three methods in the preliminary analysis 

the 1000 SNPs with the greatest effects, were selected for 
inclusion.  The number of SNPs included was then in-
creased by increments of 500 up to 6000, or until a decrease 
of greater than 2% in the correlation of the GEBV of the 
validation bulls with their EBV13 was obtained.  In each 
additional run, the 500 SNPs with the next greatest effects 
were added to the previous sample of SNPs.  If a 2% reduc-
tion in the correlation was obtained with 1500 SNPs, rela-
tive to 1000 SNPs; then the number of SNPs included was 
decreased by increments of 100 until a 2% decrease in the 
correlation was obtained. 

 
Computation and evaluation of GEBV.  The 

method of VanRaden (2008) was used to compute genomic 
effects on the MDYD from the training set for each trait.  
All bulls with genotypes and MDYD09 were included in the 
analysis.  Direct genomic evaluations (DGE) for the valida-
tion bulls were then computed as: Za^, where Z is the inci-
dence matrix that relates MDYD09 with the genomic effects 
vector a and a^  is the vector of solutions for a.  Similar to 
VanRaden et al. (2009) final GEBV were computed from 
an index including the DGE and PA.  The regression coef-
ficients for the index were derived from the training data 
set.  PA were computed as the means of the parent EBV09 
derived from the standard multi-trait analysis of the truncat-
ed data set.  PA and GEBV derived by the three methods 
were compared to EBV13 and MDYD13 based on correla-
tions, regressions of EBV13 on GEBV and means and 
standard deviations (SD). 
 

Results and Discussion 
 

Correlations of PA with EBV13 and MDYD13, PA 
means, SD and regressions of EBV13 on PA are given in 
Table 1 for all 8 traits.  Correlations were generally higher 
for EBV13, than for MDYD13, because parent evaluations 
contribute to the EBV13 through the relationship matrix.  
The difference was more pronounced for the low heritabil-
ity traits.  Evaluations can be considered unbiased if regres-
sions are close to unity and means of PA are close to the 



EBV13 means.  Regressions were close to unity for all traits, 
except for herdlife and PD11.  Means of PA were higher 
than EBV13 means for all traits, except for SCS and fertility.  
The greatest difference in SD units was obtained for milk, 
nearly 0.5 SD. 

 
Table 1.  Correlations of parent average EBV (PA) 
based on 2009 data, with 2013 EBV (EBV13) and modi-
fied daughter-yield deviations (MDYD) for each trait; 
PA and EBV means, PA standard deviations (SD) and 
regressions of EBV13 on PA (Reg). 

 Correlations Means   
Trait EBV13 MDYD PA EBV13 SD Reg 

Milk 0.54 0.55 348.9 256.7 189 1.00 
Fat 0.50 0.41 16.64 14.84 7.90 0.91 
Protein 0.47 0.47 15.16 14.28 4.20 0.99 
SCS1 0.61 0.51 -0.08 -0.07 0.12 0.9 
Fertility 0.60 0.34 0.13 0.34 1.42 1.04 
Persistency 0.62 0.54 0.64 0.2 1.46 0.93 
Herdlife 0.50 0.05 70 64.5 52.2 0.76 
PD11 0.43 0.40 532.0 465.2 165 0.82 

1 Somatic cell score 
 
 
Optimum numbers of SNPs, correlations, means, 

SD and regressions of protein EBV13 on GEBV derived by 
method 1 are presented in Table 2.  With effects selected 
based on 2009 EBV, correlations of GEBV with EBV13 and 
MDYD13 were lower than the corresponding correlations 
with PA.  However, with selection based on 2010 EBV 
correlations with EBV13 and MDYD13 were higher than the 
corresponding PA correlations.  With selection based on 
2013 EBV, correlations approached 0.8, as found previous-
ly by Weller et al. (2014).  In all cases, data collected after 
2009 was used only to select SNPs included in the analysis.  
The calculation of the GEBV used only data available in 
2009.  These results indicate that reliabilities of GEBV de-
rived by method 1 should be higher for older calves.  This 
was tested by computing correlations by birth year, but the 
results were not consistent, apparently due to the relatively 
low number of bulls genotyped each year.  Unlike PA, the 
method 1 estimates had regressions < unity for the early 
years, and regressions > unity for the later years.  There 
were no clear trends for means or SD.  All SD were higher 
than for PA. 

 
Table 2. Optimum numbers of SNPs, correlations of 
GEBV derived by subsets of SNPs selected by EMMAX 
effects with EBV computed in 2009 through 2013, with 
2013 EBV (EBV13) and modified daughter-yield-
deviations (MDYD); means and standard deviations 
(SD) of GEBV and regressions of 2013 protein EBV on 
GEBV (Reg).   

 Number Correlations    
Year  of SNPS EBV13 MDYD Mean SD Reg 
2009 500 0.40 0.40 9.23 5.72 0.61 

2010 1000 0.53 0.54 10.00 5.91 0.79 
2011 500 0.68 0.68 11.08 6.06 0.98 
2012 4000 0.70 0.71 10.39 5.62 1.10 
2013 4000 0.78 0.77 10.64 5.70 1.20 

 
 Correlations of PA and GEBV derived by method 
2 with EBV13 and MDYD13 for the optimum number of 
SNPs for each trait are given in Table 3.  The optimum 
number of SNPs ranged from 800 for SCS to 4000 for fer-
tility.  For all traits, except for persistency and PD11, the 
correlations of MDYD13 with GEBV were higher than the 
correlations with PA.  This was also the case for correla-
tions of GEBV with EBV13 for the milk production traits.  
SD were greater for all traits by method 2, but all regres-
sions were < 1, except for fat.  Means were generally less 
biased than PA.  
 
Table 3. Correlations of method 2 GEBV with 2013 
EBV (EBV13) and modified daughter-yield deviations 
(MDYD) for the optimum number of SNPs for each 
trait;  means and standard deviations (SD) of method 2 
EBV and regressions of EBV13 on method 2 EBV (Reg). 
Trait Number Correlations    

 of SNPs EBV13 MDYD Means SD Reg 
Milk 1500 0.57 0.58 305.1 206 0.96 
Fat 2500 0.57 0.51 14.28 7.55 1.07 
Protein 1500 0.48 0.50 11.7 4.77 0.89 
SCS1 800 0.61 0.57 -0.11 0.153 0.75 
Fertility 4000 0.61 0.38 0.35 1.68 0.9 
Persistency 3000 0.59 0.50 0.715 1.68 0.78 
Herdlife 1000 0.47 0.09 81.0 61.3 0.67 
PD11 2000 0.38 0.39 434.2 167.7 0.7 
1 Somatic cell score 
 
 
 Correlations of method 3 GEBV with EBV13 and 
MDYD13 were at best only marginally better than PA, and 
are therefore not presented. 
 

Conclusions 
 

Three methods were tested to select subsets of markers to 
compute GEBV for moderately sized dairy cattle popula-
tions with ~1000 genotyped bulls.  The optimum number of 
SNPs ranged from 800 for SCS to 4000 for fertility. Corre-
lations of up to 0.8 between GEBV and current EBV for 
validation bulls can be obtained using selected subsets of 
markers, but only if the selection criteria is based on infor-
mation not available in real time.  Correlations of GEBV 
with current EBV greater than those obtained between PA 
and current EBV can be obtained for most traits analyzed 
with subsets of markers selected based on their effects as 
derived by the EMMAX algorithm.  Means were generally 
less biased than PA.  Thus this method is optimal for popu-
lations of this size.  
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