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ABSTRACT: Theoretically, the more data in the training 
set, the better the accuracy of the predicted breeding values. 
However, adding distant generations to the training data 
will introduce computational burden, with perhaps limited 
contributions to prediction. The objectives of this study 
were to compare the accuracy of marker-based and pedi-
gree-based models and to evaluate the optimum number of 
training generations required to most accurately predict 
EBV in a commercial layer breeding line. On average, ac-
curacies of EBV based on markers were higher than accu-
racies based on pedigree. Accuracies of all methods initially 
increased with successive increases in the number of gener-
ations of training data, but slightly dropped or reached an 
asymptote when including training generations far apart 
from validation. The divergence in gene frequencies in each 
generation, genotype by environment interactions, and se-
lection over generations might be the causes of these de-
creases in accuracy. 
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Introduction 
 

Pedigree-derived relationships can be used to pre-
dict breeding values (EBV). Genomic estimated breeding 
values (GEBV) are predicted by genomic approaches which 
rely on genetic markers, such as single nucleotide polymor-
phisms (SNPs). Selection and mating strategies based on 
GEBV can enhance the rate of genetic improvement com-
pared to mass selection, and control inbreeding. The accu-
racy of genomic prediction is influenced by marker density 
(Meuwissen et al. (2001)), linkage disequilibrium (LD) and 
linkage between markers and quantitative trait loci (QTL) 
(Habier et al. (2007)), distribution of QTL effects (Meuwis-
sen et al. (2001)), size of training population (VanRaden et 
al. (2009)), architecture of trait (Daetwyler et al. (2010)), 
effective population size (Hayes et al. (2009)), structure of 
relationships between training and validation individuals 
(Habier et al. (2010)), and other factors (Goddard (2009)). 
The accuracy of Pedigree-based Best Linear Unbiased Pre-
diction (PBLUP) relies on heritabilities and additive genetic 
relationships among individuals.   

 
One challenge of breeding value prediction is uti-

lizing information from non-genotyped animals with pheno-
types. The two-step approach (Garrick et al. (2009)) and 
modifications to the reduced animal model (Wolc et al. 
(2011)) to account for non genotyped offspring are applica-
ble solutions. It has typically been assumed that the more 

training data that are available, the better the accuracy of 
genomic prediction (Goddard (2009)). Further, Goddard 
(2009) pointed out that the selection response of genomic 
selection is expected to decline in comparison with pheno-
typic selection, if no new training information is provided 
over successive generations. GEBV can capture both rela-
tionships between markers and QTL, and relationships be-
tween animals, which is expected to lead to better persis-
tence of accuracy than EBV (Habier et al. (2007)). Wolc et 
al. (2011) confirmed that GEBV are more persistent than 
pedigree-based EBV in layer chickens. The objectives of 
this study were to compare the accuracy of marker-based 
and pedigree-based prediction models, to examine the value 
of a family mean (FM) model which uses phenotypes from 
non-genotyped offspring of genotyped parents, and to quan-
tify the increase in accuracy with additional training genera-
tions in a commercial layer breeding line. 

 
Materials and Methods 

 
Data comprised phenotypic records from 17,793 

birds born between 2002 and 2011. Among those, 2,723 
birds over 9 generations were genotyped with a 42K SNP 
panel (Illumina). After removing SNPs with call rate <0.95, 
minor allele frequency <0.025 or parentage probability 
<0.95, only 23,356 segregating SNPs remained across 28 
autosomes. Records of 4 traits were analyzed: early and late 
egg color (eCO, lCO), and early and late egg weights 
(eEW, lEW). Early (late) measurements were taken at 26-
28 (42-46) weeks. In total, there were 16,018 records for 
early traits, and 11,915 records for late traits. Estimates of 
heritability from single-trait pedigree-based animal models 
fitted using ASREML3.0 (Gilmour et al. (2009)) are in Ta-
ble 1. 

 
Table 1. Estimates of pedigree-based heritabilities for 4 
traits from single-trait animal models 

1early (e) and late (l) CO (egg color), and EW (average weight of 3-5 
eggs). 
 

Three models were used for predicting breeding 
values. 1) Animal model using pedigree relationships 
(PBLUP) with available phenotype records, performed us-
ing ASREML3.0 (Gilmour et al. (2009)). 2) BayesB (Meu-
wissen et al. (2001)) with genotyped individual records, 

Trait1 h2 Standard error 
eCO 0.71 0.017 
eEW 0.69 0.017 
lCO 0.68 0.025 
lEW 0.61 0.026 



performed using the GenSel4.0 software (Fernando and 
Garrick (2013)). BayesB assumes a fraction 𝜋 of markers 
have zero effects, and locus-specific variance for each SNP 
with a scaled inverse Chi-Square prior distribution for the 
variances. Parameter 𝜋  was assumed to be 0.95. The chain 
length was 33,000 iterations, of which the first 3,000 were 
discarded for burn-in. 3) BayesB with both genotyped indi-
vidual records and family means (BayesB-FM). To exploit 
information from non-genotyped birds, the average geno-
type of their genotyped parents and the non-genotyped full-
sib mean phenotype were calculated. Weighting factors for 
the residual variance of the family mean records were 
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, where 𝑝 is the number of records included in the 

family mean (Garrick et al. (2009)). All methods accounted 
for fixed effects of hatch within generation. Different vali-
dation sets were represented by every generation from 2006 
to 2011. EBV in validation sets were estimated based on 
different numbers of generations immediately preceding the 
validation generation. The prediction accuracy was the cor-
relation between EBV and hatch-corrected phenotypes in 
the validation data, divided by the square root of the trait 
heritability. The expected accuracy of PBLUP was calculat-
ed as 1 − 𝑃𝐸𝑉 𝜎!! , where 𝑃𝐸𝑉  is the prediction error 
variance, and 𝜎!! is genetic variance. The PEV was obtained 
from elements of the matrix 𝐶!!,  representing the animal 
partition of the inverse coefficient matrix of the mixed 
model equations (Henderson (1975)). The expected accura-
cy of genomic prediction was calculated according to the 
equations as follows (Goddard et al. (2011)):  
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𝑀! = 2𝑁!𝐿𝑘/log  (𝑁!𝐿) 

 
𝜃 = 𝑇𝑞!ℎ!/𝑀! 

 
where is M is number of markers (23,356 SNPs), Me is the 
effective number of chromosome segments in the popula-
tion, Ne is the effective population size, L is the average 
length of chromosome in Morgan (~1.07 M), k is the num-
ber of chromosomes (k=28), T is the size of training popula-
tion (individuals with genotype records), and 𝑞!ℎ! is mark-
er-based heritability. Because the Ne varied across genera-
tions, Ne =150 was used as an approximation.  

 
Results and Discussion 

 
Figure 1 shows prediction accuracies of EBV 

across different validation sets for the average of the 4 
traits. Marker-based methods outperformed the pedigree-
based method, which indicated that markers not only cap-
ture relationships between individuals but also QTL infor-
mation through LD or linkage (Habier et al. (2007)). Add-
ing information through family means resulted in BayesB-

FM having higher accuracy than BayesB using only geno-
typed individual records, which implies the family mean 
model is a practical method to implement information from 
non-genotyped non parent animals. Expected and empirical 
accuracies of PBLUP quickly plateaued with an increasing 
number of training generations. However, the expected ac-
curacy of PBLUP overestimated the empirical value, which 
might be caused by continuous selection over many genera-
tions. Selection induces the Bulmer effect (Bulmer (1971)), 
which is not taken into account in the calculation of ex-
pected accuracy in PBLUP.  

 
Figure 1: Average accuracies across 4 traits of predicted 
breeding values based on the number of training gener-
ations when using a pedigree-based model (PBLUP), 
BayesB with genotyped individual records (BayesB), or 
BayesB with genotyped individual and family mean rec-
ords (BayesB-FM), the expected accuracy of PBLUP 
(Exp-PBLUP), and the expected accuracy of GEBV 
(MBV). 

 
Empirical and expected accuracy of genomic pre-

dictions increased quickly with increasing number of train-
ing generations, but empirical accuracy slightly dropped or 
plateaued when adding more distant generations (Figure 1). 
The increase of training generations is analogous to increas-
ing size of the training population, which is expected to 
lead to an increase in accuracy (Meuwissen et al. (2001)). 
Because the calculation of expected accuracy doesn’t con-
sider the relationship between training and validation sets, it 
was lower than empirical value at the beginning. Distant 
generations did not contribute to accurate genomic predic-
tions, therefore empirical accuracy of genomic prediction 
was actually lower than the expected value when training 
sets exceeded 5 generations. In this population, convention-
al selection using pedigree and phenotypes was conducted 
before 2009, while genomic information has been imple-
mented in the selection program since 2009. The transition 
of the selection program might introduce a reduction in 
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accuracy of GEBV. On the other hand, the expected accu-
racy of GEBV ignored the impact from population structure 
and generational selection which would lead to a higher 
accuracy than the empirical value. The reductions in predic-
tion accuracy when all generations were used for training 
were not expected, though these reductions were not signif-
icant.  The reductions might have been caused by divergent 
gene frequencies in each selected generation, the influence 
of environmental effects, or interactions between genotype 
and environment. Results differed significantly between 
validation sets (not shown). Different family structures, 
selection strategies, and sampling processes may be the 
causes of disparities between validation sets.  

 
Conclusion 

 
This study investigated accuracies of EBV for dif-

ferent numbers of training generations in layer chickens 
using pedigree or marker-based models. The prediction 
accuracy of EBV using markers was higher than using ped-
igree information. The BayesB-FM model outperformed 
BayesB model, because the family mean model utilized 
information from non-genotyped individuals. In general, the 
prediction accuracy increased with an increase in the num-
ber of training generations. However, it slightly decreased 
or became asymptotic when including distant generations in 
training sets. Based on this data, using 5 generations in 
training seems optimal for GEBV prediction, although re-
sults differed between validation sets.   
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