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Summary

Feed efficiency is one of the traits that is gaining more attention in dairy cattle breeding
programs. High phenotyping cost and the necessity for adequate infrastructure reduce the
throughput of this breeding goal. Apart from the genetic predisposition of the animal to
efficiently utilize feed, ruminal and gut microbiota play a fundamental role in feed digestion
and by-products available to the animal. Advances in high throughput techniques allow
investigating the microbiota composition and its potential implications on feed efficiency in
cattle. Simultaneously, the host genotype has an effect on the microbiota composition,
building a host-microbiota binomio responsible for feed efficiency.

In this paper, we determined that microbiota is more correlated to feed efficiency than
to residual feed intake. A core microbiota was detected using different statistical methods,
composed by some microorganisms from Prevotella, Lachnospira, Coprococcus,
Shuttleworthia, Ruminococcus, Methanobrevibacter and CF231 genera, plus some
unspecified genera from the Paraprevotellaceae, RF16, BSII and Christensenellaceae
families. This core microbiota affecting feed efficiency explained 50% more variance than
that explained by the genotypes, increased the goodness of fit of the model, and the
correlation between observed and estimated feed efficiency phenotypes by 5%.

Some of the challenges and limitations we faced in the metagenomic studies are
presented. Lastly, some strategies to improve feed efficiency through perturbation of the
microbiota composition are envisioned, including biotechnology strategies.

Introduction

Feed efficiency is one of the traits that has gained attention in recent years. There is
increased interest in reducing feed cost in all livestock species, while improving sustainability
with a lower use of land and human edible food. The economic importance of feed efficiency
in dairy cattle has been estimated to be between 5-18 % in a global selection index (Gonzalez-
Recio et al., 2014b; Bell et al., 2014). Feed efficiency, measured as residual feed intake (RFI),
has already been incorporated as a direct trait in Australia, and other countries are planning to
include it soon (Pryce et al., 2015). This trait can be defined as the additional dry matter
intake for an animal given her milk yield, in energy equivalent, lactation stage, body weight
and change in body weight. The lower the RFI the more efficiency in the dry matter
utilization. Residual feed intake is associated to mobilization of body reserves during
lactation, and is highly correlated to energy balance. However, a different feed efficiency
(FE) value is usually used by nutritionists, calculated as the ratio between output (milk yield
equivalent energy) and input (dry matter intake or DMI). Although this ratio trait poses some
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difficulties from a breeding perspective, as more emphasis is usually placed on the trait with
larger variance (milk yield or DMI). Including the microbiome composition as a proxy could
tackle this limitations.

Recording feed efficiency traits is expensive to measure in the commercial population.
High investment in terms of infrastructure and labour render this trait unfeasible to be
recorded in the whole population. Although a reference population can be created to
implement genomic selection for feed efficiency, proxy traits that help with the genetic
prediction of the selected traits could improve accuracies of genomic prediction. Rumen
microbiome composition is proposed as a proxy to improve feed digestion related traits such
as feed efficiency or methane emissions (Ross et al., 2013; Wallace et al., 2015). However,
the microbiome reflects more than a feed efficiency. It can be considered as a complementary
trait, because the microbiome is actually a holobiont organism that has its own complex
machinery that is responsible for feed digestion and that interacts with the animal for an
enhanced or impaired feed efficiency. One of these interactions occurs at the level of the host
genetic background, which modulates the microbiome composition (Roehe et al., 2016;
Bonder et al., 2016; Gonzalez-Recio et al., 2017). Breeding programs could perturb the
rumen microbiota towards some target composition, if the characteristics of the beneficial
microbiome are known. Advances in sequence technology allow discovering taxonomy of
ruminal microbes at an affordable and decreasing cost. Potential microbial gene functions can
also be obtained through whole sequenced metagenome. However, strategies to perturbate the
microbiome for enhanced feed efficiency are not clear, and they need to demonstrate a clear
benefit for a throughput implementation. The costs of obtaining the microbiome and
metagenome compositions are still large, which entails a competitive disadvantage for
developing throughput strategies. However, the cost of sequencing is decreasing at an
incredible rate, and genomic selection can also add value to the study of the rumen and gut
microbiomes.

This paper evaluates the potential, challenges and limitations of metagenomics in the
multiomics era, as a complementary alternative to improve feed efficiency in dairy cattle.

Material and methods

Data from 70 cows from BLANCA from the Pyrenees experimental farm (Lerida, Spain) with
comprehensive feed efficiency, genotypic and metagenomic information were used. Ruminal
samples were collected from each cow using a stomach tube. Microbial DNA extraction was
performed using the commercial Power Soil DNA Isolation kit (Qiagen Inc) following the
manufacturer’s instructions. The extracted DNA was subjected to paired-end Illumina
sequencing of the V3 and V4 hypervariable regions of the 16S rRNA gene. Sequence data
were processed using MOTHUR version 1.38.1.1 (Schloss et al., 2009; Kozich et al., 2013),
and analyzed with the microbiome package in R. Genotypes from animals under study were
also obtained from the Illumina 9K chip (Illumina, Inc, San Diego, CA, USA), and were
imputed to the Illumina Bovine50K beadchip using the Eurogenomics reference population.

Microbiome correlations with feed efficiency traits

RFI and FE were phenotypically correlated in our sample (p=-0.37), but they are traits
defining different biological processes. RFI, calculated as observed minus expected DMI
based on milk yield and bodyweight, is mainly correlated with DMI (p=0.79) and
uncorrelated to milk yield (p=0.09) (Figure 1a and 1b), whereas FE is more correlated to milk
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yield (p=0.86) but uncorrelated to DMI (p=0.08) (Figure lc and 1d). Microbiome
composition is more correlated with FE than with RFI (Figure2), as this holobiont is
responsible for feed digestion; products and subproducts thereof are further absorbed by the
host animal along the rumen and gut. On the other hand, the biological processes that
generate variation in RFI are mainly controlled by the host animal’s ability to mobilize body
reserves during lactation. Some correlation might still exist if the composition of the
microbiome is partially controlled by the host animal.

There are no previous studies, to the best of our knowledge, showing to which trait the
microbiome is more correlated. RFI is thus far the preferred trait to include in the merit
index, because it presents lower correlation to milk production level, which allows
incorporating it in the selection indices without double counting the importance of milk yield,
which would increase the genetic gain of both traits (Gonzalez-Recio et al., 2014b). The
lower genetic correlation with the main traits related to profit offers easier interpretation of
index weights for the farmers.

Based on these premises, feed efficiency studies involving the microbiome should
probably consider FE as the target trait, rather than RFI. The more favourable microbiota
composition could then be selected for using genetic selection on the host. Genetic
correlations between the target microbiota and other traits, including RFI, should be estimated
to apply proper selection weights. Microbiota composition can be recorded in a larger number
of cows in the population than FE, and at a lower cost, which would favour genomic selection
strategies.

Microbes associated to feed efficiency

We studied a core group of Operational Taxonomic Units (OUT) that were associated to feed
efficiency using linear regression, random forest and zero-inflated regression models. Here,
milk and DMI variables were standardized to calculate FE. Significant Spearman correlations
with FE were found for Coprococcus (0.34), Shuttleworthia (0.35), unclassified Bacteroidetes
spp (-0.34), BS11 Spp (-0.32), F16 Spp (-0.35) and Paraprevotellaceae Spp (-0.34) (Figure 2).
Random Forest analyses showed variable importance >20% for 19 OTUs at explaining FE,
including Lachnospira, Coprococcus, Prevotella, BSI1 Spp, RF16 Spp, Paraprevotellaceae
Spp and other unspecified genera belonging mainly to Firmicutes, Proteobacteria and
Bacteroidetes phyla (Figure 3). Bayesian regression of OTU relative abundance (RA) on FE
assuming zero inflated Gaussian distribution on the microbial RA showed that highest density
(90%) of posterior probability distribution for FE as covariate did not contain zero for the
genera of Prevotella, Lachnospira, Shuttleworthia, CF231, Sharpea, Coprococcus,
Ruminococcus, Ruminococcaceae Spp, RFI16 Spp, Christensenellaceae spp and
Succinivibrionaceae spp among others (Table 1).

The variance of FE explained by this microbial core community was studied using
different methods:

1) A Fixed model with environmental effects of lactation number and lactation stage

2) A GBLUP model adding the genomic breeding value (GEBV) to 1).

3) Relative abundance of the microbes in this core microbiome was included in 2) as

covariates applying a double exponential prior distribution.
4) A nonmetric multidimensional scaling kernel matrix accounting for microbiome
similarities was included in 2), using a reproducing kernel Hilbert space approach.

Including the microbiome information improved the goodness of fit of model 1 and 2,

and the residual variance decreased by 28% with respect to model 1 (Table 2). Genomic
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heritability for FE was estimated between 0.17 and 0.24, whereas microbial community
explained a larger variance than the genotype. The inclusion of microbiome information
increased the correlation between the predicted and observed phenotype by 5% (Table 3).

Nonetheless, microbial communities interact with each other, and determining a
global favourable composition is substantially more challenging. Studying the functional
variation of those communities may help to disentangle what genera are more favourable.
Whole metagenome sequencing could improve these results.

Challenges of metagenomics studies that need to be tackled

In the last decades, the advances in sequencing technology have facilitated the study of
microbes in their natural habitats, instead of under lab conditions and specific cultures. These
advances have allowed a more in depth knowledge of microbial processes in the ruminant
gut. Nonetheless, metagenomic research applied to feed efficiency in cattle is still in its
infancy, and many questions need to be tackled to achieve a widespread implementation in
breeding programs. In this section we discuss some of the challenges that can be faced with
the available technology; and some of them might require a large economical cost to be
overcome.

Microbiote sites
Most of the studies in cattle have sampled microbiota from the rumen to describe its
composition and function. Most of the fiber degradation (typically around 30-35% of the
nutrients consumed by dairy cattle) is done in the rumen, with most of the energy derived
from this digestion (along with that from soluble carbohydrates) absorbed in the rumen,
whereas protein (both dietary and microbial) is absorbed in the intestine. (Ross et al., 2012)
showed differences between faecal and rumen microbiotas. Other studies have shown
differences between the microbiota at different intestine sites. It is not clear which microbiota
site explains a larger proportion of the variability in FE or RFI. It is likely that feed efficiency
is best explained by different microbiota at several gut sites, and a proper balance among
them must be achieved.

Futures studies need to determine the relative importance of the microbiota at
different gut sites to explain the variability of feed efficiency, and placing proper weights on a
potential microbial efficiency index.

Longitudinal effect

Most of the microbiota composition colonizes the rumen and overall gut during the early
stage of the animal (Malmuthuge et al., 2017; Yafiez-Ruiz et al., 2010). Opposite to the host
genotype, the holobiont metagenome varies throughout the life of the animal, depending on
age, diet, lactation state, hygiene conditions and even pen mates. Although these
modifications occur, the core microbiome is usually maintained along the animal lifetime
(Saraswati and Sitaraman, 2015; Odamaki et al., 2016). The taxonomical characterization
may change, but the general and even specific functionality of the microbiome could remain
with different microbial taxa. Whether this longitudinal variability within the host animal
across time is relevant to the overall feed efficiency or whether relevant changes in the
Spearman correlation of hosts occurs need to be yet determined.

Bio-informatics
The conclusions that we can draw from microbiome research rely on computational tools that
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provide accurate characteristics from large data sets of DNA sequences from the community
under investigation. The microbiota composition will then be used as an intermediate
phenotype for animal breeding. Several authors have reviewed the specifications of different
bioinformatics tools to analyze 16S rRNA gene sequences eg (Lozupone and Knight, 2005;
Oulas et al., 2015; Nilakanta et al., 2014). Among these tools, MOTHUR (Schloss et al.,
2009) and QIIME (Caporaso et al., 2010) are currently two of the most used suits of tools to
analyze metagenomic information from rRNA amplicons. However, comparisons of these
tools on real data sets are scarce. For instance, (Lindgreen et al., 2016) performed a
benchmark study previously in order to investigate the performance of several tools in terms
of taxonomy and function on synthetic whole sequence metagenomes. (Plummer and Twin,
2015) evaluated QIIME and MOTHUR in faecal samples collected from preterm infants,
showing slight differences in terms of the effective number of genera, richness and relative
abundance detected. Pérez et al. (submitted) evaluated the same two softwares in rumen
samples, showing important differences in the relative abundance of less frequent microbes,
which may have a large impact at comparing differences between microbiota samples from
different animals or treatments (Figure 4).

Evaluating the performance of different software at recovering the true microbial
composition can be used with mock samples that represent as closely as possible the
composition of the environments to be analyzed.

Microbial complexity

Most studies evaluating the host genetic effect on the microbiome have considered the
relative abundance of individual genera independently. This is a simplistic approach that
misses the complexity of the microbiome, in terms of functionality and interacting
relationships among microorganisms. Further, it does not consider the decrease in the RA of
certain genera when others increase and vice versa, or that bacteria may have more than a
single copy of DNA and thus some RA of specific genera may be overestimated. This
simultaneous relationship should be considered, and microbial composition needs be
considered as a whole. Further, different microbial composition may perform similarly in
terms of efficiency, as different sort of microbes may have similar functions.

There are traditional microbiology tools that allow comparing microbial richness and
diversity within and between samples, such as the alpha and beta diversity, rarefaction curves,
Shannon distance, Bray-Curtis distance. Future research needs to evaluate whether these
parameters suit the needs to evaluate the differences between the feed efficiency of
microbiotas. Otherwise, ad-hoc measurements or strategies need to be developed.

Host genetic effect

As said previously, the host genotype affects the composition of the microbiota. This
regulation can happen at different levels. For instance, the size and shape of the gut, the
internal conformation of the rumen and intestine walls, feed transit speed, appetite, taste
transduction or physiological processes are importantly regulated by the genes that the host
carries. They can simultaneously selectively favour certain microbes.

The microbiome can also explain some of the traditional GXE effect, and opportunities
arise for in-depth interaction studies that were not possible to face before the metagenomics
era. The interactive picture seems to be complex, and multiple interactions can be thought of,
such as interactions between the microbiome and the host genotype or between the
microbiome and diet (or environment). The more complete the phenotypic information the
more accurately the models can separate all sources of information, and can increase the
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accuracy of genetic and genomic prediction for feed efficiency. It is probably too ambitious

trying to disentangle the whole situation during the next few years, but some research might
help to understand these complex relationships from a biological point of view. Whether this
will translate in some in-farm application to improve feed efficiency needs yet to be proved.

Statistical models
Microbiome studies pose some challenges in animal breeding. Microbial relative abundance is
the output from some bioinformatics analyses and is obtained with some error. These data are
then considered as an intermediate phenotype, which may have implications for the
traditional methods.

Microbial RA is seldom normally distributed, and transformation thereof is necessary.
Some OTUs are not observed in all individuals, increasing the density on zero for the
distribution of the intermediate phenotype, which requires the implementation of zero inflated
models and their extensions to incorporate genetic effects should be straightforward.

Another challenge comes from the existing interaction between the host genetics and
the microbial composition. Models that simultaneously account for GXE and ExE must be
developed to analyze the effect of the microbiota on complex traits.

Genetic opportunities to shape the rumen microbial system

Breeding

Dairy breeding programs have selected for more efficient cows along the last decades.
However, they have also impaired fertility and energy balance as collateral consequences. The
efforts in the last years at breeding for a recovered fertility had a negative impact on RFI and
maintenance requirements as shown in (Pryce et al., 2014). Phenotypic and genetic variability
still exist that allow for precision breeding. A favourable microbial composition in the rumen
and gut of cattle can be included as an additional selection trait related to increase benefits
from higher milk yield at the same feed cost, or lower feed costs at constant milk yield levels.
This can be done following the traditional steps in the breeding programs: 1) define what is
the favourable microbial composite, 2) calculate the economic importance of a more
favourable microbiome, 3) estimate covariance components with traits in the breeding goal
and in the index, and 4) apply proper selection weight. The most challenging aspect is number
1), and efforts should be placed in determining what microbes or microbiota types are
preferred to increase feed efficiency. A microbiota composite index with different
characteristics along the gut seems sensible at this point. Metagenome and microbial RNA
amplicons can be sequenced at an affordable cost that is expected to decrease in the next
years. Evaluating the genetic potential to host a favourable microbiome in the whole
population is possible by phenotyping a large enough population and applying genomic
selection. Although rumen and (mainly) faecal microbiota can be sampled at a relatively low
cost, phenotyping cost and its margin must be evaluated (Gonzalez-Recio et al., 2014a).

Biotechnology (CRISPR)

One of the most promising techniques for animal breeding in the last years is genome editing.
It is unclear how genome edited animals will be regulated in the future. Currently, the FDA is
drafting the rules that will regulate the use and application of genome editing technologies. It
will open the potential to edit genomic regions in the host genome that favour more efficient
microbial compositions. This poses the limitation that some genes that explain a large enough
amount of genetic variability must be discovered.
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Biotechnology also offers the possibility of editing the genome of microorganisms
relevant for feed efficiency. Recently, Delgado and Gonzalez-Recio (2017) explored the
possibility of editing methanogenic archaeas with CRISPR/Cas9 to study the potential and
limitations of reducing methanogenesis in the rumen. Genome editing technology can be
applied in vitro and could assist on modifying metagenomic pathways involved in feed
efficiency. The metabolic routes that increase or decrease the efficiency of feed digestion in
cattle can be determined. This would also allow determining what potential consequences are
expected at altering the microbiota in a given direction. This technology can complement the
results shown here and help at understanding what and why some given microbiota
composition are preferred over others, as well as avoiding to perturb microbiota in an
undesirable direction.

However, this technology also shows some limitations. Several studies have already
reported that some individuals are resistant to changes using CRISPR (Champer et al., 2017),
and it is thought to be dependent on the genetic line.

Conclusions

Metagenomic research is in its infancy, but it shows promising strategies to improve feed
efficiency in dairy cattle. This study presents novel result correlating microbiota composition
to feed efficiency. The main challenges that need to be addressed in the near future are
discussed; and some guidelines on incorporating microbiota information in the breeding
programs are proposed. The main questions that need to be addressed are 1) to determine the
composition of the most favourable microbiota to improve feed efficiency, which might
depend on the forage-concentrate ratio; 2) to standardize the protocols and bioinformatics for
analysing microbiota; and 3) to weight the information within a global merit index.

Table 1. Posterior mean of FE ratio effect for different microbial genera using Bayesian
regression.

posterior mean HPD95!' HPD90!

g Ruminococcus -1.09 N.S. *
fSuccinivibrionaceae unclassified 1.31 * *
g Coprococcus 0.73 * *
o GMDI4H09 unclassified -2.01 N.S. *
p_ Firmicutes unclassified -0.53 N.S. *
f Christensenellaceae unclassified -0.21 * *
p__ SRI unclassified -0.27 N.S. *
f RF16 unclassified -0.30 * *
g Lachnospira 0.38 * *
g Sharpea 0.29 N.S. *
f Ruminococcaceae unclassified -1.00 * *
g CF231 -0.31 * *
g Shuttleworthia 1.20 * *
p__ Bacteroidetes unclassified -2.80 * *
g Prevotella 5.78 * *

I An “*’ states that the highest probability density at 90 or 95% did not contain zero, N.S. otherwise.

Table 2. Variance components and DIC for the different models tested.
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DIC Residual Genomic Genomic
Variance Variance heritability
Fixed Model 1522 0.46 NA NA
GBLUP 146.3  0.386 0.11 0.22
Microbiome 147.7 0.42.6 NA NA
GBLUP + Regression on microbes 146.2  0.396 0.08 0.17
GBLUP + microbialKernel 144 0.368 0.07 0.16

Table 3. Correlation between feed efficiency phenotype (v) and the genomic breeding value
(GEBYV), Microbiome effect, and the sum of all effects in the model (v _hat).

Cor(y,GEBV) Cor(y, Microbiome)

Cor(y, y_hat)

Fixed Model - - 0.54
GBLUP 0.81 - 0.77
Microbiome (RKHS) - 0.52 0.67
GBLUP + Regression on microbes  0.80 0.40 0.76
GBLUP + microbialKernel 0.79 0.49 0.79
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Figure 1. Scatter plots for a) RFI and DMI, b) RFI and milk, c) FE and DMI and d) FE and
milk yield. Cows with the lowest RFI (more efficient) are plotted on green dots, whereas less
efficient cows are plotted on orange dots.
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Figure 2. Correlations between core microbial genera and RFI or FE.
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