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Summary 

 

In a previous study, we identified candidate causative variants for milk protein and fatty acid 

composition. We designed these variants on the custom part of the EuroG10K BeadChip. In 

order to validate the effects of these candidate variants on milk composition and to estimate 

their effects on cheese-making properties (CMP), a genome wide association analysis 

(GWAS) was performed on 30 CMP and milk protein, fatty acid and mineral composition 

traits predicted from MIR spectra in 19,862 Montbéliarde cows. After genotypes (50K SNP + 

EuroG10K custom part SNP) have been imputed for all cows, each SNP effect was tested in a 

mixed linear model including random polygenic effects estimated with a genomic relationship 

matrix. We confirm here the effects of candidate causative variants located in 18 functional 

candidate genes on both CMP and milk composition traits. Five of these variants are missense 

in ALPL, SLC26A4, CSN3, RECQL4 and SCD genes. Seven are located in 5’UTR (AGPAT6), 

3’UTR (GPT) or upstream (CSN1S1, CSN1S2, PAEP, DGAT1 and PICALM) regions and six 

are located in introns of the SLC37A1, MGST1, CSN2, BRI3BP, FASN and ANKH genes.  
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Introduction 

 

Cheese-making properties (CMP) are strongly related to bovine milk composition (Wedholm 

et al., 2006). In the PhénoFinlait project, protein and fatty acid milk composition was 

predicted using mid-infrared (MIR) spectrometry in the three main French dairy cattle breeds. 

GWAS on whole-genome sequences (imputed using data of the 1000 bull genome project) led 

to the identification of candidate causative mutations in 24 candidate genes (Sanchez et al., 

2017). In order to validate these mutations in an independent population, they were designed 

on the custom part of the EuroG10K Beadchip. The independent population was obtained 

from the FROM’MIR project, aiming at analyzing CMP and milk composition (proteins, fatty 

acids and minerals) predicted from MIR spectra in Montbéliarde cows. In the present study, 

we validate candidate causative variants evidenced in the PhénoFinlait project on both CMP 
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and milk composition traits predicted from MIR spectra on 19,862 FROM’MIR Montbéliarde 

cows.  

 

Material and methods 

 

Cheese-making properties and milk composition 

 

A total of 420 milk samples were collected from 250 individual cows, 100 herds and 70 dairy 

vats in Protected Designation of Origin and Protected Geographical Indication cheese area of 

Franche-Comté (Eastern France). Milk samples were aliquoted and analysed within 24h by 

MIR spectroscopy using MilkoScan FT6000 (Foss, Hillerod, Denmark) and by CMP reference 

methods for soft and pressed cooked cheese parameters. Three cheese yields, 13 milk rennet 

coagulation (Formoptic) and 8 milk acidification by lactic bacteria (CINAC) parameters were 

measured.  

Equations of predictions were developed for all the 24 cheese-making criteria using 

partial least square (PLS) regression. Accuracies of prediction (R²) ranged from 0.08 to 0.89 

according to cheese-making criteria (Laithier et al., 2017). Only 15 criteria with medium to 

high prediction accuracies were retained for genetic analyses, i.e. 3 cheese yields (0.54 ≤ R² ≤ 

0.89), 9 coagulation (0.43 ≤ R² ≤ 0.76) and 3 acidification (0.39 ≤ R² ≤ 0.62) traits (Table 1). 

Moreover, 15 milk composition traits (protein, fatty-acid and mineral contents) were predicted 

from MIR spectra using prediction equations developed in PhénoFinlait (Ferrand et al., 2012) 

and Optimir (Gengler et al., 2016) projects.  

Prediction equations were applied on about 6 million MIR spectra collected from 

330,000 Montbéliarde cows in the Franche-Comté region. Data from cows with at least three 

test-day records during the first lactation (1,506,037 test-day records from 194,934 cows) 

were adjusted for non-genetic effects using a mixed model. Herd x test-day x spectrometer 

and stage of lactation were included in this model as fixed effects while animal genetic and 

permanent environment effects were assumed random. Data adjusted for fixed effects were 

then averaged per cow.   

 

Imputation and association analyses 

 

A subset of 19,862 FROM’MIR cows were genotyped for the BovineSNP50 BeadChip (6,505 

cows) or for the customized low-density EuroG10K BeadChip (13,357 cows mainly for 

versions 1 to 5) for routine genomic selection analyses. All genotypes were imputed to the 

50K SNP and the custom part SNP of the version 7 of the EuroG10K BeadChip with FImpute 

software (Sargolzaei et al., 2014) using 177,736 cows genotyped for the BovineSNP50 or 

EuroG10K (versions 1 to 7) BeadChips. Mean squared correlations (R²) between imputed and 

true genotypes reached 91.6% in a validation set for variants with MAF ≥ 1%. 

Single-trait association analyses were performed between all the polymorphic variants 

with MAF ≥ 1% (45,120 SNP) and the 30 traits (15 CMP and 15 milk composition traits). A 

mixed linear model was applied with the GCTA software (Yang et al., 2011). It included a 

mean, the additive fixed effect of the candidate variant and random polygenic effects of 

animals, estimated with the genomic relationship matrix calculated from the 50K genotypes. 

The SNP effect was considered significant if its –log10(P) value estimated assuming a Student 

distribution was higher than 6 (5% threshold after Bonferroni correction, 0.05/45,120). 

 



Results and discussion 
 

A total of 1069 variants had significant effects on at least one of the 30 traits analysed. Most 

of them were located in regions previously identified in the PhénoFinlait project for milk 

protein or fatty acid composition (Sanchez et al., 2017). We confirm here the effects of these 

regions on both CMP and milk composition traits (proteins, fatty acids and minerals). We 

found the well-known regions of caseins (BTA6), PAEP (BTA11) or DGAT1 (BTA14) genes 

as well as other regions on BTA1, 2, 4, 5, 17, 19, 20, 26, 27 and 29. In these regions, 

candidate variants of the EuroG10K custom part were systematically more significant than the 

50K SNP (Figure 1).  

We targeted 24 genes (1 to 5 per region) found to be the best candidates in the 

PhénoFinlait project (Table 2). For each gene, one to 33 candidate variants were present in the 

custom part of the EuroG10K BeadChip, i.e. 245 in total. Among them, 167, with MAF 

higher than 1%, had significant effects on at least one CMP or milk composition traits and 

115 were ranked among the 10 most significant variants (TOP10) for at least one of the traits 

analysed. Effects of variants located in BOP1 (7), MROH1 (13) and CYPB11 (1) genes on 

BTA14 were not tested because they had too low MAF (<0.01). Three other candidate genes 

could be excluded because all their polymorphisms had no significant effects (ABCG2 and 

DHX37) or because significant variants were not located in the TOP10 of the peak (GPSM1).  

Eighteen candidate genes, each containing 1 to 29 candidate variants were thus kept 

for further investigations. Ranks of each variant were then examined in peaks for all traits in 

order to find the best candidate causative variant in each gene (Table 3). In most of the genes, 

one variant, reported in Table 2, was ranked at the top of the peak for several traits analysed in 

this study. Five of these variants were missense in ALPL, SLC26A4, CSN3 ( casein A/B 

variants), RECQL4 and SCD. Seven were located in 5’UTR (AGPAT6), 3’UTR (GPT) or 

upstream (CSN1S1, CSN1S2, PAEP, DGAT1 and PICALM) regions. Finally, six variants were 

located in introns of the SLC37A1, MGST1, CSN2, BRI3BP, FASN and ANKH genes. 

Surprisingly, polymorphisms previously found as causal variants in PAEP and DGAT1 genes 

were not the most significant for any traits in our study. In each of these genes, we identified 

an upstream variant that was the best candidate in both PhénoFinlait and FROM’MIR cows.  

Analyses of both CMP and milk composition traits show that variants with significant 

effects on CMP were also significant on milk protein, fatty acid or mineral composition. This 

result therefore confirms the genetic links, previously described via genetic correlations, 

between CMP and milk composition and in particular with protein composition (Wedholm et 

al., 2006). Moreover, considering all results together can help to establish the functional link 

existing between these traits and candidate genes. For example, the best candidate variant in 

the SLC37A1 gene, that encodes a glucose-6-phosphate transporter, had significant effects on 

four CMP traits (8 ≤ -log(P) ≤ 30) and five milk composition traits (13 ≤ -log(P) ≤ 167) with 

the most significant effects obtained on phosphorous. Similarly, the best candidate variant in 

the ANKH gene, encoding an inorganic pyrophosphate transport regulator that helps to prevent 

the deposition of Ca and P in bones, had significant effects on ten CMP (7 ≤ -log(P) ≤ 46) and 

9 milk composition traits (30 ≤ -log(P) ≤ 175) with the most significant effects found for -

LA that exhibits a high affinity to Ca. These two examples illustrate the interest to consider 

fine-scale phenotypes in complement to complex phenotypes, as CMP. 

  

 

 



Conclusion 
 

Effects of 13 genomic regions, previously identified on milk composition, are validated on 

CMP and milk protein, fatty acid and mineral composition predicted from MIR spectra in an 

independent population of 19,862 Montbéliarde cows. We show that analysing simultaneously 

fine-scale phenotypes and traits of interest can facilitate the identification of functional 

candidate genes. We report here candidate causative variants in 18 genes that have functional 

links with traits studied. In order to explore other genomic regions and to find other candidate 

variants, a GWAS will be performed on whole-genome sequence variants after imputations 

with the run 6 of the 1000 bull genome project. GWAS results will then be exploited to search 

for a set of interacting genes co-associated with CMP and milk composition. 
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Figure 1. Manhattan plot for cheese yield. 

  



Table 1. Means and standard deviations (SD) of cheese-making properties with medium to 

high accuracy MIR predictions (R²val). 

 

Trait1  Unit2 R²val3 Mean ± SD4 

Cheese yields (CY)     

100 x (g curd / g milk) CYCURD % 0.82 38.7 ± 8.6 

100 x (g DM curd / g DM milk) CYDM % 0.89 67.6 ± 5.7 

(g milk fat + g milk protein) / kg curd CYFAT-PROT g/kg 0.54 184.8 ± 23.7 

Coagulation (FORMOPTIC)     

Curd firmness at Rennet Coagulation Time (RCT) aSC FI 0.76 19.7 ± 3.1 

Curd firmness at Rennet Coagulation Time (RCT) aPCC FI 0.76 19.3 ± 2.9 

Curd firmness at 2 times RCT a2SC FI 0.69 23.4 ± 2.5 

Curd organisation index (time to obtain 10 FI from RCT) K10SC min 0.43 6.1 ± 1.7 

Curd organisation index (time to obtain 10 FI from RCT) K10PCC min 0.44 11.4 ± 3.5 

Curd organisation index standardized for RCT K10/RCTSC  0.72 0.34 ± 0.75 

Curd organisation index standardized for RCT K10/RCTPCC  0.68 0.35 ± 0.52 

Curd organisation speed (curve slope at 10 FI1) TG10SC FI 0.49 14.9 ± 4.5 

Curd organisation speed standardized for RCT TG10/RCTPCC FI/min 0.48 0.25 ± 1.1 

Acidification (CINAC)     

Started value of pH pH0SC upH 0.45 6.6 ± 0.12 

Started value of pH pH0PCC upH 0.62 6.5 ± 0.14 

upH/h between 170 and 230 min pHPCC upH/h 0.39 0.12 ± 0.15 
1 Soft cheese (SC) / Pressed cooked cheese (PCC); 2 Firmness measured by Formoptic in 

Volts (FV) is converted in Firmness Index FI = 10 x FV; 3Accuracy of MIR prediction, R²val 

= coefficient of determination calculated in the validation set (n=123); 4Mean ± standard 

deviation (SD) calculated from 6,146,510 MIR predictions 



 

Table 2. Best candidate variants in 24 candidate genes (R² = imputation accuracy). 

BTA Gene 
# total 

variants  

# sign. 

variants1  

# Top10 

variants2  

Best 

candidate 

(bp) 

Functional 

annotation 
MAF R² Variant 

1 SLC37A1 14 12 10 144,398,764 Intronic 0.45 98.4 1 

2 ALPL 8 7 7 131,812,821 Missense 0.38 95.8 2 

4 SLC26A4 4 2 2 48,990,317 Missense 0.28 99.1 3 

5 MGST1 26 19 7 93,945,738 Intronic 0.07 98.9 4 

6 ABCG2 5 0 0 - - - - - 

6 CSN1S1 11 9 4 87,141,456 Upstream 0.30 98.3 5 

6 CSN1S2 10 7 5 87,261,372 Upstream 0.30 98.3 6 

6 CSN2 14 10 8 87,187,426 Intronic 0.20 93.7 7 

6 CSN3 21 17 10 87,390,612 Missense 0.40 95.6 8 

11 GPSM1 3 3 0 - - - - - 

11 PAEP 33 31 29 103,298,431 Upstream 0.45 1 9 

14 RECQL4 3 3 2 1,617,841 Missense 0.01 87.3 10 

14 GPT 2 2 2 1,623,927 3'UTR 0.48 96.3 11 

14 DGAT1 9 1 1 1,795,176 Upstream 0.48 97.7 12 

14 BOP1 7 0 0 - - - - - 

14 MROH1 13 0 0 - - - - - 

14 CYP11B1 1 0 0 - - - - - 

17 BRI3BP 12 9 9 53,072,959 Intronic 0.06 98.5 13 

17 DHX37 6 0 0 - - - - - 

19 FASN 10 8 5 51,386,735 Intronic 0.37 94.7 14 

20 ANKH 20 11 3 58,427,343 Intronic 0.07 98.8 15 

26 SCD 6 5 5 21,144,708 Missense 0.46 96.2 16 

27 AGPAT6 4 4 4 36,212,352 5'UTR 0.50 96.9 17 

29 PICALM 3 2 2 9,611,304 Upstream 0.22 95.5 18 
1 Variants with MAF ≥ 0.01 and –log(p-value) ≥ 6; 2 Variants ranked in the top10 for at least one trait  

 



Table 3. Ranks of the 18 best candidate variants in the peaks identified for each trait.  
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3        2   1  1  1 1  1 1  1      1    

4 4 3 5 18 18   22   22 13      5    1 1 1 1      

5 32 26 47 22 37 51 64 46 42 26 39 43  88   19 28 5  26     9 8  40 46 

6 2 3 28 4 3 13 41 23 4 5 3 4     58 50 66 50 38        7  

7 51 50 48 38 38 53 66 55 48 28 45 52  113   20 18 4  19      4  41 52 

8 31 28 1 2 11  2 1 2 50 13 2  18  5 2 1 18 3 2          

9 1 1 7 35 5 21 35  5 3 2 2  4  1 12 23 2 18 2 10      9  7 

10 58 70 65 45 38  43 26 28  44 45   1 42 35 78  11 40 62 56 57 68  48 56  36 

11                      7 5 5 6     7 
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14                      1 1 1       
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16 1 1  3        1      1 1   12 11 12 15      
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18              2    2 2       2 2    
1See Table 2 for descriptions of variants 
2See Table 1 for descriptions of cheese-making properties traits 

 

 

 

 

 


